BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38293815)

  • 1. Nanopore sequencing improves construction of customized CRISPR-based gene activation libraries.
    Wang H; Tan HY; Lian J; Zhou K
    Biotechnol Bioeng; 2024 May; 121(5):1543-1553. PubMed ID: 38293815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PARA: A New Platform for the Rapid Assembly of gRNA Arrays for Multiplexed CRISPR Technologies.
    Yuan G; Martin S; Hassan MM; Tuskan GA; Yang X
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Screening Approach for the Dissection of Cellular Regulatory Networks of NF-κB Using Arrayed CRISPR gRNA Libraries.
    O'Shea P; Wildenhain J; Leveridge M; Revankar C; Yang JP; Bradley J; Firth M; Pilling J; Piper D; Chesnut J; Isherwood B
    SLAS Discov; 2020 Jul; 25(6):618-633. PubMed ID: 32476557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm.
    Liu X; Yang Y; Qiu Y; Reyad-Ul-Ferdous M; Ding Q; Wang Y
    J Genet Genomics; 2020 Nov; 47(11):672-680. PubMed ID: 33451939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 6. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CORALINA: a universal method for the generation of gRNA libraries for CRISPR-based screening.
    Köferle A; Worf K; Breunig C; Baumann V; Herrero J; Wiesbeck M; Hutter LH; Götz M; Fuchs C; Beck S; Stricker SH
    BMC Genomics; 2016 Nov; 17(1):917. PubMed ID: 27842490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling High-Throughput and Targeted Screening for Identification of Nonobvious Metabolic Engineering Targets.
    Babaei M; Thomsen PT; Pastor MC; Jensen MK; Borodina I
    ACS Synth Biol; 2024 Jan; 13(1):168-182. PubMed ID: 38141039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes.
    Vad-Nielsen J; Lin L; Bolund L; Nielsen AL; Luo Y
    Cell Mol Life Sci; 2016 Nov; 73(22):4315-4325. PubMed ID: 27178736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platform.
    Wangensteen KJ; Wang YJ; Dou Z; Wang AW; Mosleh-Shirazi E; Horlbeck MA; Gilbert LA; Weissman JS; Berger SL; Kaestner KH
    Hepatology; 2018 Aug; 68(2):663-676. PubMed ID: 29091290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCR-mediated One-day Synthesis of Guide RNA for the CRISPR/Cas9 System.
    Hassan N; Easmin F; Ekino K; Harashima S
    Bio Protoc; 2021 Jul; 11(13):e4082. PubMed ID: 34327279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly multiplexed genome engineering using CRISPR/Cas9 gRNA arrays.
    Kurata M; Wolf NK; Lahr WS; Weg MT; Kluesner MG; Lee S; Hui K; Shiraiwa M; Webber BR; Moriarity BS
    PLoS One; 2018; 13(9):e0198714. PubMed ID: 30222773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational gRNA design based on transcription factor binding data.
    Bergenholm D; Dabirian Y; Ferreira R; Siewers V; David F; Nielsen J
    Synth Biol (Oxf); 2021; 6(1):ysab014. PubMed ID: 34712839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Design of gRNAs Targeting Genetic Variants Across HIV-1 Subtypes for CRISPR-Mediated Antiviral Therapy.
    Chung CH; Allen AG; Atkins A; Link RW; Nonnemacher MR; Dampier W; Wigdahl B
    Front Cell Infect Microbiol; 2021; 11():593077. PubMed ID: 33768011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GiRAFR improves gRNA detection and annotation in single-cell CRISPR screens.
    Yu Q; Van Minsel P; Galle E; Thienpont B
    Commun Biol; 2023 Sep; 6(1):975. PubMed ID: 37741886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent Guide RNAs Facilitate Development of Layered Pol II-Driven CRISPR Circuits.
    Menn DJ; Pradhan S; Kiani S; Wang X
    ACS Synth Biol; 2018 Aug; 7(8):1929-1936. PubMed ID: 30021068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting off-targeting in guide-RNAs for CRISPR systems for simultaneous editing of multiple genes.
    Ferreira R; Gatto F; Nielsen J
    FEBS Lett; 2017 Oct; 591(20):3288-3295. PubMed ID: 28884816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo.
    Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B
    Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-gRNA Design.
    Pallarès Masmitjà M; Knödlseder N; Güell M
    Methods Mol Biol; 2019; 1961():3-11. PubMed ID: 30912036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.