These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38293992)

  • 1. [Predicting cerebral glioma enhancement pattern using a machine learning-based magnetic resonance imaging radiomics model].
    He H; Guo E; Meng W; Wang Y; Wang W; He W; Wu Y; Yang W
    Nan Fang Yi Ke Da Xue Xue Bao; 2024 Jan; 44(1):194-200. PubMed ID: 38293992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Glioma enhancement pattern using a MRI radiomics-based model.
    Wang W; Wang Y; Meng W; Guo E; He H; Huang G; He W; Wu Y
    Medicine (Baltimore); 2024 Sep; 103(36):e39512. PubMed ID: 39252245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T2-FLAIR mismatch sign and machine learning-based multiparametric MRI radiomics in predicting IDH mutant 1p/19q non-co-deleted diffuse lower-grade gliomas.
    Tang WT; Su CQ; Lin J; Xia ZW; Lu SS; Hong XN
    Clin Radiol; 2024 May; 79(5):e750-e758. PubMed ID: 38360515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning-based multiparametric magnetic resonance imaging radiomics model for distinguishing central neurocytoma from glioma of lateral ventricle.
    Mo H; Liang W; Huang Z; Li X; Xiao X; Liu H; He J; Xu Y; Wu Y
    Eur Radiol; 2023 Jun; 33(6):4259-4269. PubMed ID: 36547672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine-Learning and Radiomics-Based Preoperative Prediction of Ki-67 Expression in Glioma Using MRI Data.
    Ni J; Zhang H; Yang Q; Fan X; Xu J; Sun J; Zhang J; Hu Y; Xiao Z; Zhao Y; Zhu H; Shi X; Feng W; Wang J; Wan C; Zhang X; Liu Y; You Y; Yu Y
    Acad Radiol; 2024 Aug; 31(8):3397-3405. PubMed ID: 38458887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Histopathological Grading of Adult Gliomas Based On Preoperative Conventional Multimodal MRI Radiomics: A Machine Learning Model.
    Du P; Liu X; Wu X; Chen J; Cao A; Geng D
    Brain Sci; 2023 Jun; 13(6):. PubMed ID: 37371390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors.
    Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK
    Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of machine learning methods in delta-radiomics feature analysis.
    Chang Y; Lafata K; Sun W; Wang C; Chang Z; Kirkpatrick JP; Yin FF
    PLoS One; 2019; 14(12):e0226348. PubMed ID: 31834910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the Ki-67 expression level in head and neck squamous cell carcinoma with machine learning-based multiparametric MRI radiomics: a multicenter study.
    Chen W; Lin G; Chen Y; Cheng F; Li X; Ding J; Zhong Y; Kong C; Chen M; Xia S; Lu C; Ji J
    BMC Cancer; 2024 Apr; 24(1):418. PubMed ID: 38580939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.
    Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS
    Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine learning radiomics model based on bpMRI to predict bone metastasis in newly diagnosed prostate cancer patients.
    Xinyang S; Shuang Z; Tianci S; Xiangyu H; Yangyang W; Mengying D; Jingran Z; Feng Y
    Magn Reson Imaging; 2024 Apr; 107():15-23. PubMed ID: 38181835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach.
    Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y
    Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study.
    Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR
    Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359
    [No Abstract]   [Full Text] [Related]  

  • 14. High-order radiomics features based on T2 FLAIR MRI predict multiple glioma immunohistochemical features: A more precise and personalized gliomas management.
    Li J; Liu S; Qin Y; Zhang Y; Wang N; Liu H
    PLoS One; 2020; 15(1):e0227703. PubMed ID: 31968004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging.
    Lin K; Cidan W; Qi Y; Wang X
    Med Phys; 2022 Jul; 49(7):4419-4429. PubMed ID: 35366379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The efficacy of using a multiparametric magnetic resonance imaging-based radiomics model to distinguish glioma recurrence from pseudoprogression.
    Fu FX; Cai QL; Li G; Wu XJ; Hong L; Chen WS
    Magn Reson Imaging; 2024 Sep; 111():168-178. PubMed ID: 38729227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion-weighted imaging and arterial spin labeling radiomics features may improve differentiation between radiation-induced brain injury and glioma recurrence.
    Zhang J; Wu Y; Wang Y; Zhang X; Lei Y; Zhu G; Mao C; Zhang L; Ma L
    Eur Radiol; 2023 May; 33(5):3332-3342. PubMed ID: 36576544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive value of magnetic resonance imaging radiomics-based machine learning for disease progression in patients with high-grade glioma.
    Li Z; Chen L; Song Y; Dai G; Duan L; Luo Y; Wang G; Xiao Q; Li G; Bai S
    Quant Imaging Med Surg; 2023 Jan; 13(1):224-236. PubMed ID: 36620140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glioma Tumor Grading Using Radiomics on Conventional MRI: A Comparative Study of WHO 2021 and WHO 2016 Classification of Central Nervous Tumors.
    Moodi F; Khodadadi Shoushtari F; Ghadimi DJ; Valizadeh G; Khormali E; Salari HM; Ohadi MAD; Nilipour Y; Jahanbakhshi A; Rad HS
    J Magn Reson Imaging; 2024 Sep; 60(3):923-938. PubMed ID: 38031466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.