These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38294559)

  • 1. Vector-borne disease models with Lagrangian approach.
    Gao D; Cao L
    J Math Biol; 2024 Jan; 88(2):22. PubMed ID: 38294559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid Lagrangian-Eulerian model for vector-borne diseases.
    Gao D; Yuan X
    J Math Biol; 2024 Jun; 89(2):16. PubMed ID: 38890206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relating Eulerian and Lagrangian spatial models for vector-host disease dynamics through a fundamental matrix.
    Vargas Bernal E; Saucedo O; Tien JH
    J Math Biol; 2022 Jun; 84(7):57. PubMed ID: 35676373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vector-borne diseases models with residence times - A Lagrangian perspective.
    Bichara D; Castillo-Chavez C
    Math Biosci; 2016 Nov; 281():128-138. PubMed ID: 27622812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basic reproduction ratio of a mosquito-borne disease in heterogeneous environment.
    Zhao H; Wang K; Wang H
    J Math Biol; 2023 Jan; 86(3):32. PubMed ID: 36695934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-stage Vector-Borne Zoonoses Models: A Global Analysis.
    Bichara D; Iggidr A; Smith L
    Bull Math Biol; 2018 Jul; 80(7):1810-1848. PubMed ID: 29696599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of human movement on the persistence of vector-borne diseases.
    Cosner C; Beier JC; Cantrell RS; Impoinvil D; Kapitanski L; Potts MD; Troyo A; Ruan S
    J Theor Biol; 2009 Jun; 258(4):550-60. PubMed ID: 19265711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of residence times in two-patch dengue transmission dynamics and optimal strategies.
    Lee S; Castillo-Chavez C
    J Theor Biol; 2015 Jun; 374():152-64. PubMed ID: 25791283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-patch and multi-group epidemic models: a new framework.
    Bichara D; Iggidr A
    J Math Biol; 2018 Jul; 77(1):107-134. PubMed ID: 29149377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymptotic analysis of a vector-borne disease model with the age of infection.
    Wang X; Chen Y; Martcheva M; Rong L
    J Biol Dyn; 2020 Dec; 14(1):332-367. PubMed ID: 32324106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competent Hosts and Endemicity of Multi-Host Vector-Borne Diseases.
    Sanabria Malagón C; Vargas Bernal E
    Bull Math Biol; 2019 Nov; 81(11):4470-4483. PubMed ID: 30535844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SIS and SIR Epidemic Models Under Virtual Dispersal.
    Bichara D; Kang Y; Castillo-Chavez C; Horan R; Perrings C
    Bull Math Biol; 2015 Nov; 77(11):2004-34. PubMed ID: 26489419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical analysis of a mean-field vector-borne diseases model on complex networks: An edge based compartmental approach.
    Wang X; Yang J
    Chaos; 2020 Jan; 30(1):013103. PubMed ID: 32013474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vector Preference Annihilates Backward Bifurcation and Reduces Endemicity.
    Caja Rivera R; Barradas I
    Bull Math Biol; 2019 Nov; 81(11):4447-4469. PubMed ID: 30569327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial spread of infectious diseases with conditional vector preferences.
    Hamelin FM; Hilker FM; Dumont Y
    J Math Biol; 2023 Aug; 87(2):38. PubMed ID: 37537411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical behaviors of a vector-borne diseases model with two time delays on bipartite networks.
    Zhao R; Liu Q; Zhang H
    Math Biosci Eng; 2021 Apr; 18(4):3073-3091. PubMed ID: 34198376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A climate-based malaria model with the use of bed nets.
    Wang X; Zhao XQ
    J Math Biol; 2018 Jul; 77(1):1-25. PubMed ID: 28965238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An age-structured vector-borne disease model with horizontal transmission in the host.
    Wang X; Chen Y
    Math Biosci Eng; 2018 Oct; 15(5):1099-1116. PubMed ID: 30380301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A MULTI-PATCH MALARIA MODEL WITH LOGISTIC GROWTH POPULATIONS.
    Gao D; Ruan S
    SIAM J Appl Math; 2012 Jan; 72(3):819-841. PubMed ID: 23723531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities.
    Harvim P; Zhang H; Georgescu P; Zhang L
    Bull Math Biol; 2019 Nov; 81(11):4518-4563. PubMed ID: 31641984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.