These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38294559)

  • 21. Sensitivity Analysis in an Immuno-Epidemiological Vector-Host Model.
    Gulbudak H; Qu Z; Milner F; Tuncer N
    Bull Math Biol; 2022 Jan; 84(2):27. PubMed ID: 34982249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The relation between host competence and vector-feeding preference in a multi-host model: Chagas and Cutaneous Leishmaniasis.
    Rivera RC; Bilal S; Michael E
    Math Biosci Eng; 2020 Aug; 17(5):5561-5583. PubMed ID: 33120566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of venereal transmission on the dynamics of vertically transmitted viral diseases among mosquitoes.
    Nadim SS; Ghosh I; Martcheva M; Chattopadhyay J
    Math Biosci; 2020 Jul; 325():108366. PubMed ID: 32387647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Habitat fragmentation promotes malaria persistence.
    Gao D; van den Driessche P; Cosner C
    J Math Biol; 2019 Dec; 79(6-7):2255-2280. PubMed ID: 31520106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transmission dynamics for vector-borne diseases in a patchy environment.
    Xiao Y; Zou X
    J Math Biol; 2014 Jul; 69(1):113-46. PubMed ID: 23732558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global analysis of multi-host and multi-vector epidemic models.
    Bichara DM
    J Math Anal Appl; 2019 Jul; 475(2):1532-1553. PubMed ID: 32287387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global stability for epidemic models on multiplex networks.
    Huang YJ; Juang J; Liang YH; Wang HY
    J Math Biol; 2018 May; 76(6):1339-1356. PubMed ID: 28884277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The control of vector-borne disease epidemics.
    Hosack GR; Rossignol PA; van den Driessche P
    J Theor Biol; 2008 Nov; 255(1):16-25. PubMed ID: 18706917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vector-Borne Disease Models with Active and Inactive Vectors: A Simple Way to Consider Biting Behavior.
    Simoy MI; Aparicio JP
    Bull Math Biol; 2021 Dec; 84(1):22. PubMed ID: 34940929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of a periodic tick-borne disease model with co-feeding and multiple patches.
    Zhang X; Sun B; Lou Y
    J Math Biol; 2021 Mar; 82(4):27. PubMed ID: 33656643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of heterogeneity on the invasion probability of mosquito-borne diseases in multi-host models.
    Bolzoni L; Pugliese A; Rosà R
    J Theor Biol; 2015 Jul; 377():25-35. PubMed ID: 25886821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The basic reproduction number of vector-borne plant virus epidemics.
    Van den Bosch F; Jeger MJ
    Virus Res; 2017 Sep; 241():196-202. PubMed ID: 28642061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Competitive exclusion in a multi-strain immuno-epidemiological influenza model with environmental transmission.
    Dang YX; Li XZ; Martcheva M
    J Biol Dyn; 2016 Dec; 10(1):416-56. PubMed ID: 27608293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relative prevalence-based dispersal in an epidemic patch model.
    Lu M; Gao D; Huang J; Wang H
    J Math Biol; 2023 Mar; 86(4):52. PubMed ID: 36877332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling optimal treatment strategies in a heterogeneous mixing model.
    Choe S; Lee S
    Theor Biol Med Model; 2015 Nov; 12():28. PubMed ID: 26608713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vector-borne diseases and the basic reproduction number: a case study of African horse sickness.
    Lord CC; Woolhouse ME; Heesterbeek JA; Mellor PS
    Med Vet Entomol; 1996 Jan; 10(1):19-28. PubMed ID: 8834738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ross-Macdonald models: Which one should we use?
    Simoy MI; Aparicio JP
    Acta Trop; 2020 Jul; 207():105452. PubMed ID: 32302688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incorporating tick feeding behaviour into R
    Johnstone-Robertson SP; Diuk-Wasser MA; Davis SA
    Theor Popul Biol; 2020 Feb; 131():25-37. PubMed ID: 31730874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global properties of vector-host disease models with time delays.
    Cai LM; Li XZ; Fang B; Ruan S
    J Math Biol; 2017 May; 74(6):1397-1423. PubMed ID: 27659303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.