BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38294907)

  • 1. Protocol for near-infrared optogenetics manipulation of neurons and motor behavior in C. elegans using emissive upconversion nanoparticles.
    Wang R; Guo J; Yao H; Luo X; Deng Y; Tian Y; Zhang Y; Gao S
    STAR Protoc; 2024 Mar; 5(1):102858. PubMed ID: 38294907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics.
    Chen S; Weitemier AZ; Zeng X; He L; Wang X; Tao Y; Huang AJY; Hashimotodani Y; Kano M; Iwasaki H; Parajuli LK; Okabe S; Teh DBL; All AH; Tsutsui-Kimura I; Tanaka KF; Liu X; McHugh TJ
    Science; 2018 Feb; 359(6376):679-684. PubMed ID: 29439241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-Continuous Wave Near-Infrared Excitation of Upconversion Nanoparticles for Optogenetic Manipulation of C. elegans.
    Bansal A; Liu H; Jayakumar MK; Andersson-Engels S; Zhang Y
    Small; 2016 Apr; 12(13):1732-43. PubMed ID: 26849846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of upconversion nanoparticles in cellular optogenetics.
    Lin Y; Yao Y; Zhang W; Fang Q; Zhang L; Zhang Y; Xu Y
    Acta Biomater; 2021 Nov; 135():1-12. PubMed ID: 34461347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bidirectional near-infrared regulation of motor behavior using orthogonal emissive upconversion nanoparticles.
    Guo J; Chen L; Xiong F; Zhang Y; Wang R; Zhang X; Wen Q; Gao S; Zhang Y
    Nanoscale; 2023 May; 15(17):7845-7853. PubMed ID: 37057392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upconversion Nanoparticles-Based Multiplex Protein Activation to Neuron Ablation for Locomotion Regulation.
    Zhang Y; Zhang W; Zeng K; Ao Y; Wang M; Yu Z; Qi F; Yu W; Mao H; Tao L; Zhang C; Tan TTY; Yang X; Pu K; Gao S
    Small; 2020 Feb; 16(8):e1906797. PubMed ID: 32003923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards minimally invasive deep brain stimulation and imaging: A near-infrared upconversion approach.
    Chen S; Wu J; Cai A; Gonzalez N; Yin R
    Neurosci Res; 2020 Mar; 152():59-65. PubMed ID: 31987879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Upconversion Nanoparticle Enables Near Infrared-Optogenetic Manipulation of the Caenorhabditis elegans Motor Circuit.
    Ao Y; Zeng K; Yu B; Miao Y; Hung W; Yu Z; Xue Y; Tan TTY; Xu T; Zhen M; Yang X; Zhang Y; Gao S
    ACS Nano; 2019 Mar; 13(3):3373-3386. PubMed ID: 30681836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared manipulation of multiple neuronal populations via trichromatic upconversion.
    Liu X; Chen H; Wang Y; Si Y; Zhang H; Li X; Zhang Z; Yan B; Jiang S; Wang F; Weng S; Xu W; Zhao D; Zhang J; Zhang F
    Nat Commun; 2021 Sep; 12(1):5662. PubMed ID: 34580314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed Optogenetic Stimulation of Neurons with Spectrum-Selective Upconversion Nanoparticles.
    Lin X; Wang Y; Chen X; Yang R; Wang Z; Feng J; Wang H; Lai KWC; He J; Wang F; Shi P
    Adv Healthc Mater; 2017 Sep; 6(17):. PubMed ID: 28795515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications.
    Wu X; Zhang Y; Takle K; Bilsel O; Li Z; Lee H; Zhang Z; Li D; Fan W; Duan C; Chan EM; Lois C; Xiang Y; Han G
    ACS Nano; 2016 Jan; 10(1):1060-6. PubMed ID: 26736013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared Deep Brain Stimulation in Living Mice.
    Chen S
    Methods Mol Biol; 2020; 2173():71-82. PubMed ID: 32651910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-Infrared-Light Activatable Nanoparticles for Deep-Tissue-Penetrating Wireless Optogenetics.
    Yu N; Huang L; Zhou Y; Xue T; Chen Z; Han G
    Adv Healthc Mater; 2019 Mar; 8(6):e1801132. PubMed ID: 30633858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-Infrared Manipulation of Membrane Ion Channels via Upconversion Optogenetics.
    Wang Z; Hu M; Ai X; Zhang Z; Xing B
    Adv Biosyst; 2019 Jan; 3(1):e1800233. PubMed ID: 32627341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol for glial Ca
    Cheng H; Al-Sheikh U; Chen D; Duan D; Kang L
    STAR Protoc; 2022 Mar; 3(1):101169. PubMed ID: 35199034
    [No Abstract]   [Full Text] [Related]  

  • 16. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics.
    Fang-Yen C; Alkema MJ; Samuel AD
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1677):20140212. PubMed ID: 26240427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic manipulation of neural activity in C. elegans: from synapse to circuits and behaviour.
    Husson SJ; Gottschalk A; Leifer AM
    Biol Cell; 2013 Jun; 105(6):235-50. PubMed ID: 23458457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation.
    All AH; Zeng X; Teh DBL; Yi Z; Prasad A; Ishizuka T; Thakor N; Hiromu Y; Liu X
    Adv Mater; 2019 Oct; 31(41):e1803474. PubMed ID: 31432555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-Infrared Activation of Sensory Rhodopsin II Mediated by NIR-to-Blue Upconversion Nanoparticles.
    Yaguchi M; Jia X; Schlesinger R; Jiang X; Ataka K; Heberle J
    Front Mol Biosci; 2021; 8():782688. PubMed ID: 35252344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.