These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38294926)

  • 21. Inferring gene regulatory network via fusing gene expression image and RNA-seq data.
    Li X; Ma S; Liu J; Tang J; Guo F
    Bioinformatics; 2022 Mar; 38(6):1716-1723. PubMed ID: 34999771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inferring single-cell gene regulatory network by non-redundant mutual information.
    Zeng Y; He Y; Zheng R; Li M
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37715282
    [TBL] [Abstract][Full Text] [Related]  

  • 23. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Consensus Gene Regulatory Network for Neurodegenerative Diseases Using Single-Cell RNA-Seq Data.
    Koumadorakis DE; Krokidis MG; Dimitrakopoulos GN; Vrahatis AG
    Adv Exp Med Biol; 2023; 1423():215-224. PubMed ID: 37525047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inference of Gene Regulatory Network from Single-Cell Transcriptomic Data Using pySCENIC.
    Kumar N; Mishra B; Athar M; Mukhtar S
    Methods Mol Biol; 2021; 2328():171-182. PubMed ID: 34251625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SCCLRR: A Robust Computational Method for Accurate Clustering Single Cell RNA-Seq Data.
    Zhang W; Li Y; Zou X
    IEEE J Biomed Health Inform; 2021 Jan; 25(1):247-256. PubMed ID: 32356764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epigenetic Landscapes of Single-Cell Chromatin Accessibility and Transcriptomic Immune Profiles of T Cells in COVID-19 Patients.
    Li S; Wu B; Ling Y; Guo M; Qin B; Ren X; Wang C; Yang H; Chen L; Liao Y; Liu Y; Peng X; Xu C; Wang Z; Shen Y; Chen J; Liu L; Niu B; Zhu M; Liu L; Li F; Zhu T; Zhu Z; Zhou X; Lu H
    Front Immunol; 2021; 12():625881. PubMed ID: 33717140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying SARS-CoV-2 infected cells with scVDN.
    Hu H; Feng Z; Shuai XS; Lyu J; Li X; Lin H; Shuai J
    Front Microbiol; 2023; 14():1236653. PubMed ID: 37492254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ActivePPI: quantifying protein-protein interaction network activity with Markov random fields.
    Wang C; Xu S; Sun D; Liu ZP
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37698984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data.
    Zhao M; He W; Tang J; Zou Q; Guo F
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35062026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NG-SEM: an effective non-Gaussian structural equation modeling framework for gene regulatory network inference from single-cell RNA-seq data.
    Zhao J; Wong CW; Ching WK; Cheng X
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37864293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. IReNA: Integrated regulatory network analysis of single-cell transcriptomes and chromatin accessibility profiles.
    Jiang J; Lyu P; Li J; Huang S; Tao J; Blackshaw S; Qian J; Wang J
    iScience; 2022 Nov; 25(11):105359. PubMed ID: 36325073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic.
    Hasankhani A; Bahrami A; Sheybani N; Aria B; Hemati B; Fatehi F; Ghaem Maghami Farahani H; Javanmard G; Rezaee M; Kastelic JP; Barkema HW
    Front Immunol; 2021; 12():789317. PubMed ID: 34975885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying biomarkers for breast cancer by gene regulatory network rewiring.
    Wang Y; Liu ZP
    BMC Bioinformatics; 2022 Jan; 22(Suppl 12):308. PubMed ID: 35045805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic changes in gene-to-gene regulatory networks in response to SARS-CoV-2 infection.
    Tanaka Y; Higashihara K; Nakazawa MA; Yamashita F; Tamada Y; Okuno Y
    Sci Rep; 2021 May; 11(1):11241. PubMed ID: 34045524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-cell RNA-seq data semi-supervised clustering and annotation via structural regularized domain adaptation.
    Chen L; He Q; Zhai Y; Deng M
    Bioinformatics; 2021 May; 37(6):775-784. PubMed ID: 33098418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Network-Based Structural Learning Nonnegative Matrix Factorization Algorithm for Clustering of scRNA-Seq Data.
    Wu W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):566-575. PubMed ID: 35316190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.