These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 38294926)
41. SRGS: sparse partial least squares-based recursive gene selection for gene regulatory network inference. Guan J; Wang Y; Wang Y; Zhuang Y; Ji G BMC Genomics; 2022 Nov; 23(1):782. PubMed ID: 36451086 [TBL] [Abstract][Full Text] [Related]
42. Single-cell RNA-seq dissects the intratumoral heterogeneity of triple-negative breast cancer based on gene regulatory networks. Zhou S; Huang YE; Liu H; Zhou X; Yuan M; Hou F; Wang L; Jiang W Mol Ther Nucleic Acids; 2021 Mar; 23():682-690. PubMed ID: 33575114 [TBL] [Abstract][Full Text] [Related]
43. High Dimensional ODEs Coupled with Mixed-Effects Modeling Techniques for Dynamic Gene Regulatory Network Identification. Lu T; Liang H; Li H; Wu H J Am Stat Assoc; 2011; 106(496):1242-1258. PubMed ID: 23204614 [TBL] [Abstract][Full Text] [Related]
44. Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data. Gundogdu P; Loucera C; Alamo-Alvarez I; Dopazo J; Nepomuceno I BioData Min; 2022 Jan; 15(1):1. PubMed ID: 34980200 [TBL] [Abstract][Full Text] [Related]
45. SinNLRR: a robust subspace clustering method for cell type detection by non-negative and low-rank representation. Zheng R; Li M; Liang Z; Wu FX; Pan Y; Wang J Bioinformatics; 2019 Oct; 35(19):3642-3650. PubMed ID: 30821315 [TBL] [Abstract][Full Text] [Related]
46. scReQTL: an approach to correlate SNVs to gene expression from individual scRNA-seq datasets. Liu H; Prashant NM; Spurr LF; Bousounis P; Alomran N; Ibeawuchi H; Sein J; Słowiński P; Tsaneva-Atanasova K; Horvath A BMC Genomics; 2021 Jan; 22(1):40. PubMed ID: 33419390 [TBL] [Abstract][Full Text] [Related]
48. Gene Regulatory Network-Classifier: Gene Regulatory Network-Based Classifier and Its Applications to Gastric Cancer Drug (5-Fluorouracil) Marker Identification. Park H; Imoto S; Miyano S J Comput Biol; 2023 Feb; 30(2):223-243. PubMed ID: 36450117 [TBL] [Abstract][Full Text] [Related]
49. Authors' response: Occupation and SARS-CoV-2 infection risk among workers during the first pandemic wave in Germany: potential for bias. Reuter M; Rigó M; Formazin M; Liebers F; Latza U; Castell S; Jöckel KH; Greiser KH; Michels KB; Krause G; Albrecht S; Öztürk I; Kuss O; Berger K; Lampl BMJ; Leitzmann M; Zeeb H; Starke KR; Schipf S; Meinke-Franze C; Ahrens W; Seidler A; Klee B; Pischon T; Andreas Deckert AD; Schmidt B; Mikolajczyk R; Karch A; Bohn B; Brenner H; Holleczek B; Dragano N Scand J Work Environ Health; 2022 Sep; 48(7):588-590. PubMed ID: 36153787 [TBL] [Abstract][Full Text] [Related]
50. Single_cell_GRN: gene regulatory network identification based on supervised learning method and Single-cell RNA-seq data. Yang B; Bao W; Chen B; Song D BioData Min; 2022 Jun; 15(1):13. PubMed ID: 35690842 [TBL] [Abstract][Full Text] [Related]
51. Inferring gene regulatory networks from single-cell RNA-seq temporal snapshot data requires higher-order moments. Raharinirina NA; Peppert F; von Kleist M; Schütte C; Sunkara V Patterns (N Y); 2021 Sep; 2(9):100332. PubMed ID: 34553172 [TBL] [Abstract][Full Text] [Related]
52. scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery. Zhai Y; Chen L; Deng M Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869836 [TBL] [Abstract][Full Text] [Related]
53. scEFSC: Accurate single-cell RNA-seq data analysis via ensemble consensus clustering based on multiple feature selections. Bian C; Wang X; Su Y; Wang Y; Wong KC; Li X Comput Struct Biotechnol J; 2022; 20():2181-2197. PubMed ID: 35615016 [TBL] [Abstract][Full Text] [Related]
54. Continuous lifelong learning for modeling of gene regulation from single cell multiome data by leveraging atlas-scale external data. Yuan Q; Duren Z bioRxiv; 2023 Aug; ():. PubMed ID: 37577525 [TBL] [Abstract][Full Text] [Related]
55. CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data. Shi Y; Wan J; Zhang X; Yin Y Comput Biol Med; 2023 Sep; 164():107263. PubMed ID: 37531858 [TBL] [Abstract][Full Text] [Related]
56. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
57. Gene Regulatory Network Inference Using Convolutional Neural Networks from scRNA-seq Data. Mao G; Pang Z; Zuo K; Liu J J Comput Biol; 2023 May; 30(5):619-631. PubMed ID: 36877552 [TBL] [Abstract][Full Text] [Related]
58. scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation. Osorio D; Zhong Y; Li G; Xu Q; Yang Y; Tian Y; Chapkin RS; Huang JZ; Cai JJ Patterns (N Y); 2022 Mar; 3(3):100434. PubMed ID: 35510185 [TBL] [Abstract][Full Text] [Related]
59. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis. Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278 [TBL] [Abstract][Full Text] [Related]
60. Identification of Transcription Factors Regulating SARS-CoV-2 Tropism Factor Expression by Inferring Cell-Type-Specific Transcriptional Regulatory Networks in Human Lungs. Tong H; Chen H; Williams CM Viruses; 2022 Apr; 14(4):. PubMed ID: 35458567 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]