These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 38294926)
61. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network. Wang J; Xia J; Wang H; Su Y; Zheng CH Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401 [TBL] [Abstract][Full Text] [Related]
62. Single-cell RNA-seq public data reveal the gene regulatory network landscape of respiratory epithelial and peripheral immune cells in COVID-19 patients. Zhang L; Nishi H; Kinoshita K Front Immunol; 2023; 14():1194614. PubMed ID: 37936693 [TBL] [Abstract][Full Text] [Related]
63. Benchmarking imputation methods for network inference using a novel method of synthetic scRNA-seq data generation. Lasri A; Shahrezaei V; Sturrock M BMC Bioinformatics; 2022 Jun; 23(1):236. PubMed ID: 35715748 [TBL] [Abstract][Full Text] [Related]
64. Reverse engineering of a mechanistic model of gene expression using metastability and temporal dynamics. Ventre E In Silico Biol; 2021; 14(3-4):89-113. PubMed ID: 34897081 [TBL] [Abstract][Full Text] [Related]
65. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Petegrosso R; Li Z; Kuang R Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426 [TBL] [Abstract][Full Text] [Related]
66. Fusion prior gene network for high reliable single-cell gene regulatory network inference. Zhang Y; He Y; Chen Q; Yang Y; Gong M Comput Biol Med; 2022 Apr; 143():105279. PubMed ID: 35134605 [TBL] [Abstract][Full Text] [Related]
67. Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model. Tan Z; Chen X; Zuo J; Fu S; Wang H; Wang J J Transl Med; 2023 Mar; 21(1):223. PubMed ID: 36973787 [TBL] [Abstract][Full Text] [Related]
68. Single-cell transcriptomic atlas reveals distinct immunological responses between COVID-19 vaccine and natural SARS-CoV-2 infection. Wang Y; Wang X; Luu LDW; Li J; Cui X; Yao H; Chen S; Fu J; Wang L; Wang C; Yuan R; Cai Q; Huang X; Huang J; Li Z; Li S; Zhu X; Tai J J Med Virol; 2022 Nov; 94(11):5304-5324. PubMed ID: 35859327 [TBL] [Abstract][Full Text] [Related]
69. Inferring gene regulatory networks using transcriptional profiles as dynamical attractors. Li R; Rozum JC; Quail MM; Qasim MN; Sindi SS; Nobile CJ; Albert R; Hernday AD PLoS Comput Biol; 2023 Aug; 19(8):e1010991. PubMed ID: 37607190 [TBL] [Abstract][Full Text] [Related]
70. scDrug: From single-cell RNA-seq to drug response prediction. Hsieh CY; Wen JH; Lin SM; Tseng TY; Huang JH; Huang HC; Juan HF Comput Struct Biotechnol J; 2023; 21():150-157. PubMed ID: 36544472 [TBL] [Abstract][Full Text] [Related]
71. Bayesian Data Fusion of Gene Expression and Histone Modification Profiles for Inference of Gene Regulatory Network. Chen H; Maduranga DAK; Mundra PA; Zheng J IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):516-525. PubMed ID: 30207963 [TBL] [Abstract][Full Text] [Related]
72. c-CSN: Single-cell RNA Sequencing Data Analysis by Conditional Cell-specific Network. Li L; Dai H; Fang Z; Chen L Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):319-329. PubMed ID: 33684532 [TBL] [Abstract][Full Text] [Related]
73. Improving the performance of single-cell RNA-seq data mining based on relative expression orderings. Chen Y; Zhang H; Sun X Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36528803 [TBL] [Abstract][Full Text] [Related]
74. CXCR4 Expressed by Tumor-Infiltrating B Cells in Gastric Cancer Related to Survival in the Tumor Microenvironment: An Analysis Combining Single-Cell RNA Sequencing with Bulk RNA Sequencing. Su C; Yu R; Hong X; Zhang P; Guo Y; Cai JC; Hou J Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629071 [TBL] [Abstract][Full Text] [Related]
75. Optimal Sparsity Selection Based on an Information Criterion for Accurate Gene Regulatory Network Inference. Seçilmiş D; Nelander S; Sonnhammer ELL Front Genet; 2022; 13():855770. PubMed ID: 35923701 [TBL] [Abstract][Full Text] [Related]
76. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans. Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611 [TBL] [Abstract][Full Text] [Related]
77. Unsupervised Cluster Analysis and Gene Marker Extraction of scRNA-seq Data Based On Non-Negative Matrix Factorization. Wang CY; Gao YL; Kong XZ; Liu JX; Zheng CH IEEE J Biomed Health Inform; 2022 Jan; 26(1):458-467. PubMed ID: 34156956 [TBL] [Abstract][Full Text] [Related]
78. PALLAS: Penalized mAximum LikeLihood and pArticle Swarms for Inference of Gene Regulatory Networks From Time Series Data. Tan Y; Neto FBL; Neto UB IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1807-1816. PubMed ID: 33170782 [TBL] [Abstract][Full Text] [Related]
79. PathogenTrack and Yeskit: tools for identifying intracellular pathogens from single-cell RNA-sequencing datasets as illustrated by application to COVID-19. Zhang W; Xu X; Fu Z; Chen J; Chen S; Tan Y Front Med; 2022 Apr; 16(2):251-262. PubMed ID: 35192147 [TBL] [Abstract][Full Text] [Related]
80. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data. Wan H; Chen L; Deng M Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]