BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38294927)

  • 1. Hierarchical Negative Sampling Based Graph Contrastive Learning Approach for Drug-Disease Association Prediction.
    Wang Y; Song J; Dai Q; Duan X
    IEEE J Biomed Health Inform; 2024 May; 28(5):3146-3157. PubMed ID: 38294927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SGCLDGA: unveiling drug-gene associations through simple graph contrastive learning.
    Fan Y; Zhang C; Hu X; Huang Z; Xue J; Deng L
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks.
    Zhao BW; Hu L; You ZH; Wang L; Su XR
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph Convolutional Network and Contrastive Learning Small Nucleolar RNA (snoRNA) Disease Associations (GCLSDA): Predicting snoRNA-Disease Associations via Graph Convolutional Network and Contrastive Learning.
    Zhang L; Chen M; Hu X; Deng L
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting microbe-drug associations with structure-enhanced contrastive learning and self-paced negative sampling strategy.
    Tian Z; Yu Y; Fang H; Xie W; Guo M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partner-Specific Drug Repositioning Approach Based on Graph Convolutional Network.
    Sun X; Wang B; Zhang J; Li M
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5757-5765. PubMed ID: 35921345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring ncRNA-Drug Sensitivity Associations Via Graph Contrastive Learning.
    Hu X; Jiang Y; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Apr; PP():. PubMed ID: 38578855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NEDD: a network embedding based method for predicting drug-disease associations.
    Zhou R; Lu Z; Luo H; Xiang J; Zeng M; Li M
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):387. PubMed ID: 32938396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similarity measures-based graph co-contrastive learning for drug-disease association prediction.
    Gao Z; Ma H; Zhang X; Wang Y; Wu Z
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37261859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MPHGCL-DDI: Meta-Path-Based Heterogeneous Graph Contrastive Learning for Drug-Drug Interaction Prediction.
    Hu B; Yu Z; Li M
    Molecules; 2024 May; 29(11):. PubMed ID: 38893359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Link Prediction Only With Interaction Data and its Application on Drug Repositioning.
    Liu J; Zuo Z; Wu G
    IEEE Trans Nanobioscience; 2020 Jul; 19(3):547-555. PubMed ID: 32340956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KAMPNet: multi-source medical knowledge augmented medication prediction network with multi-level graph contrastive learning.
    An Y; Tang H; Jin B; Xu Y; Wei X
    BMC Med Inform Decis Mak; 2023 Oct; 23(1):243. PubMed ID: 37904198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction.
    Yao K; Wang X; Li W; Zhu H; Jiang Y; Li Y; Tian T; Yang Z; Liu Q; Liu Q
    Comput Biol Med; 2023 Sep; 163():107199. PubMed ID: 37421738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-disease association prediction using semantic graph and function similarity representation learning over heterogeneous information networks.
    Zhao BW; Su XR; Yang Y; Li DX; Li GD; Hu PW; Zhao YG; Hu L
    Methods; 2023 Dec; 220():106-114. PubMed ID: 37972913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MPCLCDA: predicting circRNA-disease associations by using automatically selected meta-path and contrastive learning.
    Liu W; Tang T; Lu X; Fu X; Yang Y; Peng L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
    Jarada TN; Rokne JG; Alhajj R
    BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph.
    Chu Y; Wang X; Dai Q; Wang Y; Wang Q; Peng S; Wei X; Qiu J; Salahub DR; Xiong Y; Wei DQ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34009265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HGCLAMIR: Hypergraph contrastive learning with attention mechanism and integrated multi-view representation for predicting miRNA-disease associations.
    Ouyang D; Liang Y; Wang J; Li L; Ai N; Feng J; Lu S; Liao S; Liu X; Xie S
    PLoS Comput Biol; 2024 Apr; 20(4):e1011927. PubMed ID: 38652712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of drug-disease associations based on reinforcement symmetric metric learning and graph convolution network.
    Luo H; Zhu C; Wang J; Zhang G; Luo J; Yan C
    Front Pharmacol; 2024; 15():1337764. PubMed ID: 38384286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.