BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38295058)

  • 1. Amorphous Engineering of Scalable Metal-Organic Framework-Derived Electrocatalyst for Highly Efficient Oxygen Evolution Reaction.
    Li Y; Wu Y; Li T; Yao Y; Cai H; Gao J; Qian G
    Small; 2024 Jan; ():e2311356. PubMed ID: 38295058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Ketjenblack Decorated Pillared Ni(Fe) Metal-Organic Frameworks as Precursor Electrocatalysts for Enhancing the Oxygen Evolution Reaction.
    Beglau THY; Rademacher L; Oestreich R; Janiak C
    Molecules; 2023 May; 28(11):. PubMed ID: 37298940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amorphous FeNiCu-MOFs as highly efficient electrocatalysts for the oxygen evolution reaction in an alkaline medium.
    Wu H; Zhai Q; Ding F; Sun D; Ma Y; Ren Y; Wang B; Li F; Bian H; Yang Y; Chen L; Tang S; Meng X
    Dalton Trans; 2022 Sep; 51(37):14306-14316. PubMed ID: 36069318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amorphous Metal-Organic Framework-Derived Electrocatalyst to Boost Water Oxidation.
    Zhai Q; Hu KJ; Shi Y; Ji H; Wu H; Ren Y; Wang B; Tang S; Ma Y; Cui M; Meng X
    J Phys Chem Lett; 2023 Feb; 14(5):1156-1164. PubMed ID: 36709444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Reconstruction of Fe-Doped Co-Metal-Organic Frameworks Boosted Electrocatalytic Performance for Oxygen Evolution Reaction.
    Yu R; Wang C; Liu D; Wang X; Yin J; Du Y
    Inorg Chem; 2023 Jan; 62(1):609-617. PubMed ID: 36573767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amorphous Metallic NiFeP: A Conductive Bulk Material Achieving High Activity for Oxygen Evolution Reaction in Both Alkaline and Acidic Media.
    Hu F; Zhu S; Chen S; Li Y; Ma L; Wu T; Zhang Y; Wang C; Liu C; Yang X; Song L; Yang X; Xiong Y
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28639333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimetallic Metal-Organic Framework-Derived Nanosheet-Assembled Nanoflower Electrocatalysts for Efficient Oxygen Evolution Reaction.
    Li Y; Lu M; He P; Wu Y; Wang J; Chen D; Xu H; Gao J; Yao J
    Chem Asian J; 2019 May; 14(9):1590-1594. PubMed ID: 30919584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting.
    Tao Z; Wang T; Wang X; Zheng J; Li X
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35390-35397. PubMed ID: 27966855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated Oxygen Evolution Kinetics by Engineering Heterojunction Coupling of Amorphous NiFe Hydr(oxy)oxide Nanosheet Arrays on Self-Supporting Ni-MOFs.
    Zhe T; Li F; Ma K; Liu M; Li R; Li M; Wang C; Luo Q; Lü X; Wang L
    Small; 2023 Oct; 19(43):e2303303. PubMed ID: 37376812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Bimetallic NiFe-Based Hydroxides/Selenides Heterostructure Nanosheet Arrays for Highly-Efficient Oxygen Evolution Reaction.
    Liu C; Han Y; Yao L; Liang L; He J; Hao Q; Zhang J; Li Y; Liu H
    Small; 2021 Feb; 17(7):e2007334. PubMed ID: 33501753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-supported Co-doped FeNi carbonate hydroxide nanosheet array as a highly efficient electrocatalyst towards the oxygen evolution reaction in an alkaline solution.
    Qi YF; Wang Q; Wang XG; Liu ZY; Zhao XJ; Yang EC
    Nanoscale; 2019 Jun; 11(22):10595-10602. PubMed ID: 31134247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the Electronic Structures of Metal-Organic Framework Nanosheets via Synergistic Doping of Metal Ions and Counteranions for Efficient Water Oxidation.
    Zhao ZY; Sun X; Gu H; Niu Z; Braunstein P; Lang JP
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15133-15140. PubMed ID: 35324163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of NiFe(CN)
    Zhou P; Wu L; Ji Z; Fan C; Shen X; Zhu G; Xu L
    J Colloid Interface Sci; 2023 Sep; 646():98-106. PubMed ID: 37187052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimetallic-MOF-Derived Amorphous Zinc/Cobalt-Iron-Based Hollow Nanowall Arrays via Ion Exchange for Highly Efficient Oxygen Evolution.
    Gu Z; Wei X; Zhang X; Duan Z; Gu Z; Gong Q; Luo K
    Small; 2021 Nov; 17(47):e2104125. PubMed ID: 34655163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Regulation Based on Functional Trimetallic Metal-Organic Frameworks for Efficient Oxygen Evolution Reaction.
    Kong Y; Lu C; Wang J; Ying S; Liu T; Ma X; Yi FY
    Inorg Chem; 2022 Jul; 61(28):10934-10941. PubMed ID: 35772081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-Fe-P Nanosheet Arrays as a Highly Synergistic and Efficient Electrocatalyst for Oxygen Evolution Reaction.
    Xie Y; Huang H; Chen Z; He Z; Huang Z; Ning S; Fan Y; Barboiu M; Shi JY; Wang D; Su CY
    Inorg Chem; 2022 May; 61(21):8283-8290. PubMed ID: 35583467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-Based Metal-Organic Framework System as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions.
    Gu M; Wang SC; Chen C; Xiong D; Yi FY
    Inorg Chem; 2020 May; 59(9):6078-6086. PubMed ID: 32310645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different Growth Behavior of MOF-on-MOF Heterostructures to Enhance Oxygen Evolution.
    Mao L; Chen D; Guo Y; Han C; Zhou X; Yang Z; Huang S; Qian J
    ChemSusChem; 2023 Jan; 16(1):e202201947. PubMed ID: 36302718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly efficient electrochemical oxygen evolution reaction catalyst constructed from a S-treated two-dimensional Prussian blue analogue.
    Wang J; Zhang M; Li J; Jiao F; Lin Y; Gong Y
    Dalton Trans; 2020 Oct; 49(40):14290-14296. PubMed ID: 33030180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized trimetallic benzotriazole-5-carboxylate MOFs with coordinately unsaturated active sites as an efficient electrocatalyst for the oxygen evolution reaction.
    Yuan JT; Hou JJ; Liu XL; Feng YR; Zhang XM
    Dalton Trans; 2020 Jan; 49(3):750-756. PubMed ID: 31850467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.