These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38295128)

  • 1. A connection between the ribosome and two S. pombe tRNA modification mutants subject to rapid tRNA decay.
    De Zoysa T; Hauke AC; Iyer NR; Marcus E; Ostrowski SM; Stegemann F; Ermolenko DN; Fay JC; Phizicky EM
    PLoS Genet; 2024 Jan; 20(1):e1011146. PubMed ID: 38295128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A connection between the ribosome and two
    De Zoysa T; Hauke AC; Iyer NR; Marcus E; Ostrowski SM; Fay JC; Phizicky EM
    bioRxiv; 2023 Sep; ():. PubMed ID: 37790432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences.
    De Zoysa T; Phizicky EM
    PLoS Genet; 2020 Aug; 16(8):e1008893. PubMed ID: 32841241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initiator tRNA lacking 1-methyladenosine is targeted by the rapid tRNA decay pathway in evolutionarily distant yeast species.
    Tasak M; Phizicky EM
    PLoS Genet; 2022 Jul; 18(7):e1010215. PubMed ID: 35901126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of 2'-O-methylation in the tRNA anticodon loop of two phylogenetically distant yeast species activates the general amino acid control pathway.
    Han L; Guy MP; Kon Y; Phizicky EM
    PLoS Genet; 2018 Mar; 14(3):e1007288. PubMed ID: 29596413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications.
    Dewe JM; Whipple JM; Chernyakov I; Jaramillo LN; Phizicky EM
    RNA; 2012 Oct; 18(10):1886-96. PubMed ID: 22895820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5'-3' exonucleases Rat1 and Xrn1.
    Chernyakov I; Whipple JM; Kotelawala L; Grayhack EJ; Phizicky EM
    Genes Dev; 2008 May; 22(10):1369-80. PubMed ID: 18443146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes.
    Guy MP; Phizicky EM
    RNA; 2015 Jan; 21(1):61-74. PubMed ID: 25404562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in the anticodon stem of tRNA cause accumulation and Met22-dependent decay of pre-tRNA in yeast.
    Payea MJ; Hauke AC; De Zoysa T; Phizicky EM
    RNA; 2020 Jan; 26(1):29-43. PubMed ID: 31619505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The yeast rapid tRNA decay pathway primarily monitors the structural integrity of the acceptor and T-stems of mature tRNA.
    Whipple JM; Lane EA; Chernyakov I; D'Silva S; Phizicky EM
    Genes Dev; 2011 Jun; 25(11):1173-84. PubMed ID: 21632824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal proteins' association with transcription sites peaks at tRNA genes in Schizosaccharomyces pombe.
    De S; Varsally W; Falciani F; Brogna S
    RNA; 2011 Sep; 17(9):1713-26. PubMed ID: 21757508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maf1-mediated repression of RNA polymerase III transcription inhibits tRNA degradation via RTD pathway.
    Turowski TW; Karkusiewicz I; Kowal J; Boguta M
    RNA; 2012 Oct; 18(10):1823-32. PubMed ID: 22919049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolving specificity of tRNA 3-methyl-cytidine-32 (m3C32) modification: a subset of tRNAsSer requires N6-isopentenylation of A37.
    Arimbasseri AG; Iben J; Wei FY; Rijal K; Tomizawa K; Hafner M; Maraia RJ
    RNA; 2016 Sep; 22(9):1400-10. PubMed ID: 27354703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partitioning of the nuclear and mitochondrial tRNA 3'-end processing activities between two different proteins in Schizosaccharomyces pombe.
    Zhang X; Zhao Q; Huang Y
    J Biol Chem; 2013 Sep; 288(38):27415-27422. PubMed ID: 23928301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An antisuppressor mutation of Schizosaccharomyces pombe affects the post-transcriptional modification of the "wobble" base in the anticodon of tRNAs.
    Heyer WD; Thuriaux P; Kohli J; Ebert P; Kersten H; Gehrke C; Kuo KC; Agris PF
    J Biol Chem; 1984 Mar; 259(5):2856-62. PubMed ID: 6559822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of a conserved tRNA anticodon modification perturbs cellular signaling.
    Zinshteyn B; Gilbert WV
    PLoS Genet; 2013; 9(8):e1003675. PubMed ID: 23935536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of acidic ribosomal proteins by ribosome-associated protein kinases of Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Jakubowicz T; Cytryńska M; Kowalczyk W; Gasior E
    Acta Biochim Pol; 1993; 40(4):497-505. PubMed ID: 8140824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Widespread temperature sensitivity and tRNA decay due to mutations in a yeast tRNA.
    Payea MJ; Sloma MF; Kon Y; Young DL; Guy MP; Zhang X; De Zoysa T; Fields S; Mathews DH; Phizicky EM
    RNA; 2018 Mar; 24(3):410-422. PubMed ID: 29259051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent suppression of ribosomal +1 frameshifts by different tRNA anticodon loop modifications.
    Klassen R; Bruch A; Schaffrath R
    RNA Biol; 2017 Sep; 14(9):1252-1259. PubMed ID: 27937809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment.
    Atkins JF; Björk GR
    Microbiol Mol Biol Rev; 2009 Mar; 73(1):178-210. PubMed ID: 19258537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.