BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38295166)

  • 1. Targeting prostate tumor low-molecular weight tyrosine phosphatase for oxidation-sensitizing therapy.
    Stanford SM; Nguyen TP; Chang J; Zhao Z; Hackman GL; Santelli E; Sanders CM; Katiki M; Dondossola E; Brauer BL; Diaz MA; Zhan Y; Ramsey SH; Watson PA; Sankaran B; Paindelli C; Parietti V; Mikos AG; Lodi A; Bagrodia A; Elliott A; McKay RR; Murali R; Tiziani S; Kettenbach AN; Bottini N
    Sci Adv; 2024 Feb; 10(5):eadg7887. PubMed ID: 38295166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of low molecular weight protein tyrosine phosphatase (Acp1) protects against stress-induced cardiomyopathy.
    Wade F; Quijada P; Al-Haffar KM; Awad SM; Kunhi M; Toko H; Marashly Q; Belhaj K; Zahid I; Al-Mohanna F; Stanford SM; Alvarez R; Liu Y; Colak D; Jordan MC; Roos KP; Assiri A; Al-Habeeb W; Sussman M; Bottini N; Poizat C
    J Pathol; 2015 Dec; 237(4):482-94. PubMed ID: 26213100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The low molecular weight protein tyrosine phosphatase promotes adipogenesis and subcutaneous adipocyte hypertrophy.
    Stanford SM; Collins M; Diaz MA; Holmes ZJ; Gries P; Bliss MR; Lodi A; Zhang V; Tiziani S; Bottini N
    J Cell Physiol; 2021 Sep; 236(9):6630-6642. PubMed ID: 33615467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Molecular-Weight Protein Tyrosine Phosphatase Predicts Prostate Cancer Outcome by Increasing the Metastatic Potential.
    Ruela-de-Sousa RR; Hoekstra E; Hoogland AM; Souza Queiroz KC; Peppelenbosch MP; Stubbs AP; Pelizzaro-Rocha K; van Leenders GJLH; Jenster G; Aoyama H; Ferreira CV; Fuhler GM
    Eur Urol; 2016 Apr; 69(4):710-719. PubMed ID: 26159288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of low-molecular-weight protein tyrosine phosphatase shows limited improvement in glucose tolerance but causes mild cardiac hypertrophy in mice.
    Jensen-Cody S; Coyne ES; Ding X; Sebin A; Vogel J; Goldstein J; Rosahl TW; Zhou HH; Jacobs H; Champy MF; About GB; Talukdar S; Zhou Y
    Am J Physiol Endocrinol Metab; 2022 Jun; 322(6):E517-E527. PubMed ID: 35403438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual Screening and Biological Evaluation of Novel Low Molecular Weight Protein Tyrosine Phosphatase Inhibitor for the Treatment of Insulin Resistance.
    Feng B; Dong X; Liu Z; Zhang J; Liu H; Xu Y
    Drug Des Devel Ther; 2023; 17():1191-1201. PubMed ID: 37113468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the low molecular weight phosphotyrosine phosphatase by phosphorylation at tyrosines 131 and 132.
    Tailor P; Gilman J; Williams S; Couture C; Mustelin T
    J Biol Chem; 1997 Feb; 272(9):5371-4. PubMed ID: 9038134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the Low Molecular Weight Protein Tyrosine Phosphatase (LMPTP) as a Potential Therapeutic Strategy for Hepatic Progenitor Cells Lipotoxicity-Short Communication.
    Alicka M; Kornicka-Garbowska K; Roecken M; Marycz K
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31771123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel isoform of the low molecular weight phosphotyrosine phosphatase, LMPTP-C, arising from alternative mRNA splicing.
    Tailor P; Gilman J; Williams S; Mustelin T
    Eur J Biochem; 1999 Jun; 262(2):277-82. PubMed ID: 10336608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase.
    Stanford SM; Aleshin AE; Zhang V; Ardecky RJ; Hedrick MP; Zou J; Ganji SR; Bliss MR; Yamamoto F; Bobkov AA; Kiselar J; Liu Y; Cadwell GW; Khare S; Yu J; Barquilla A; Chung TDY; Mustelin T; Schenk S; Bankston LA; Liddington RC; Pinkerton AB; Bottini N
    Nat Chem Biol; 2017 Jun; 13(6):624-632. PubMed ID: 28346406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of ZAP-70 through specific dephosphorylation at the inhibitory Tyr-292 by the low molecular weight phosphotyrosine phosphatase (LMPTP).
    Bottini N; Stefanini L; Williams S; Alonso A; Jascur T; Abraham RT; Couture C; Mustelin T
    J Biol Chem; 2002 Jul; 277(27):24220-4. PubMed ID: 11976341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy.
    Mukha A; Kahya U; Linge A; Chen O; Löck S; Lukiyanchuk V; Richter S; Alves TC; Peitzsch M; Telychko V; Skvortsov S; Negro G; Aschenbrenner B; Skvortsova II; Mirtschink P; Lohaus F; Hölscher T; Neubauer H; Rivandi M; Labitzky V; Lange T; Franken A; Behrens B; Stoecklein NH; Toma M; Sommer U; Zschaeck S; Rehm M; Eisenhofer G; Schwager C; Abdollahi A; Groeben C; Kunz-Schughart LA; Baretton GB; Baumann M; Krause M; Peitzsch C; Dubrovska A
    Theranostics; 2021; 11(16):7844-7868. PubMed ID: 34335968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species induced by p66Shc longevity protein mediate nongenomic androgen action via tyrosine phosphorylation signaling to enhance tumorigenicity of prostate cancer cells.
    Veeramani S; Chou YW; Lin FC; Muniyan S; Lin FF; Kumar S; Xie Y; Lele SM; Tu Y; Lin MF
    Free Radic Biol Med; 2012 Jul; 53(1):95-108. PubMed ID: 22561705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of LNCaP prostate cancer xenograft tumors by a prostate-specific protein tyrosine phosphatase, prostatic acid phosphatase.
    Igawa T; Lin FF; Rao P; Lin MF
    Prostate; 2003 Jun; 55(4):247-58. PubMed ID: 12712404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of protein tyrosine phosphatases in prostate cancer biology.
    Nunes-Xavier CE; Mingo J; López JI; Pulido R
    Biochim Biophys Acta Mol Cell Res; 2019 Jan; 1866(1):102-113. PubMed ID: 30401533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-molecular-weight protein tyrosine phosphatase expression as a prognostic factor for men with metastatic hormone-naïve prostate cancer.
    Ohtaka M; Miyoshi Y; Kawahara T; Ohtake S; Yasui M; Uemura K; Yoneyama S; Hattori Y; Teranishi JI; Yokomizo Y; Uemura H; Miyamoto H; Yao M
    Urol Oncol; 2017 Oct; 35(10):607.e9-607.e14. PubMed ID: 28641939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting cathepsin K diminishes prostate cancer establishment and growth in murine bone.
    Liang W; Wang F; Chen Q; Dai J; Escara-Wilke J; Keller ET; Zimmermann J; Hong N; Lu Y; Zhang J
    J Cancer Res Clin Oncol; 2019 Aug; 145(8):1999-2012. PubMed ID: 31172267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BKM1740, an acyl-tyrosine bisphosphonate amide derivative, inhibits the bone metastatic growth of human prostate cancer cells by inducing apoptosis.
    Seo SI; Gera L; Zhau HE; Qian WP; Iqbal S; Johnson NA; Zhang S; Zayzafoon M; Stewart J; Wang R; Chung LW; Wu D
    Clin Cancer Res; 2008 Oct; 14(19):6198-206. PubMed ID: 18829499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Protein-tyrosine Phosphatase PTP1B and LMPTP Promotes Palmitate/Oleate-challenged HepG2 Cell Survival by Reducing Lipoapoptosis, Improving Mitochondrial Dynamics and Mitigating Oxidative and Endoplasmic Reticulum Stress.
    Bourebaba L; Łyczko J; Alicka M; Bourebaba N; Szumny A; Fal AM; Marycz K
    J Clin Med; 2020 May; 9(5):. PubMed ID: 32369900
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.