BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38295166)

  • 21. Human prostatic acid phosphatase, an authentic tyrosine phosphatase, dephosphorylates ErbB-2 and regulates prostate cancer cell growth.
    Chuang TD; Chen SJ; Lin FF; Veeramani S; Kumar S; Batra SK; Tu Y; Lin MF
    J Biol Chem; 2010 Jul; 285(31):23598-606. PubMed ID: 20498373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer.
    Veeramani S; Yuan TC; Chen SJ; Lin FF; Petersen JE; Shaheduzzaman S; Srivastava S; MacDonald RG; Lin MF
    Endocr Relat Cancer; 2005 Dec; 12(4):805-22. PubMed ID: 16322323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two vicinal cysteines confer a peculiar redox regulation to low molecular weight protein tyrosine phosphatase in response to platelet-derived growth factor receptor stimulation.
    Chiarugi P; Fiaschi T; Taddei ML; Talini D; Giannoni E; Raugei G; Ramponi G
    J Biol Chem; 2001 Sep; 276(36):33478-87. PubMed ID: 11429404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells.
    Lin MF; Lee MS; Zhou XW; Andressen JC; Meng TC; Johansson SL; West WW; Taylor RJ; Anderson JR; Lin FF
    J Urol; 2001 Nov; 166(5):1943-50. PubMed ID: 11586265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of Time to Castration-Resistant Prostate Cancer Using Low-Molecular-Weight Protein Tyrosine Phosphatase Expression for Men with Metastatic Hormone-Naïve Prostate Cancer.
    Miyoshi Y; Ohtaka M; Kawahara T; Ohtake S; Yasui M; Uemura K; Yoneyama S; Yokomizo Y; Uemura H; Miyamoto H; Yao M
    Urol Int; 2019; 102(1):37-42. PubMed ID: 30326476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of protein tyrosine phosphatase improves mitochondrial bioenergetics and dynamics, reduces oxidative stress, and enhances adipogenic differentiation potential in metabolically impaired progenitor stem cells.
    Kornicka-Garbowska K; Bourebaba L; Röcken M; Marycz K
    Cell Commun Signal; 2021 Nov; 19(1):106. PubMed ID: 34732209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction between protein tyrosine phosphatase and protein tyrosine kinase is involved in androgen-promoted growth of human prostate cancer cells.
    Meng TC; Lee MS; Lin MF
    Oncogene; 2000 May; 19(22):2664-77. PubMed ID: 10851066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A possible mechanism of low molecular weight protein tyrosine phosphatase (LMW-PTP) activity modulation by glutathione action during human osteoblast differentiation.
    de Souza Malaspina TS; Zambuzzi WF; dos Santos CX; Campanelli AP; Laurindo FR; Sogayar MC; Granjeiro JM
    Arch Oral Biol; 2009 Jul; 54(7):642-50. PubMed ID: 19414171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DUSP22 suppresses prostate cancer proliferation by targeting the EGFR-AR axis.
    Lin HP; Ho HM; Chang CW; Yeh SD; Su YW; Tan TH; Lin WJ
    FASEB J; 2019 Dec; 33(12):14653-14667. PubMed ID: 31693867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metformin targets c-MYC oncogene to prevent prostate cancer.
    Akinyeke T; Matsumura S; Wang X; Wu Y; Schalfer ED; Saxena A; Yan W; Logan SK; Li X
    Carcinogenesis; 2013 Dec; 34(12):2823-32. PubMed ID: 24130167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Negative regulation of a protein tyrosine phosphatase by tyrosine phosphorylation.
    Schwarzer D; Zhang Z; Zheng W; Cole PA
    J Am Chem Soc; 2006 Apr; 128(13):4192-3. PubMed ID: 16568970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of low-molecular-weight protein tyrosine phosphatase (LMW-PTP ACP1) in oncogenesis.
    Alho I; Costa L; Bicho M; Coelho C
    Tumour Biol; 2013 Aug; 34(4):1979-89. PubMed ID: 23584899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis.
    Baniwal SK; Khalid O; Gabet Y; Shah RR; Purcell DJ; Mav D; Kohn-Gabet AE; Shi Y; Coetzee GA; Frenkel B
    Mol Cancer; 2010 Sep; 9():258. PubMed ID: 20863401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sulfiredoxin as a Potential Therapeutic Target for Advanced and Metastatic Prostate Cancer.
    Barquilha CN; Santos NJ; Monção CCD; Barbosa IC; Lima FO; Justulin LA; Pértega-Gomes N; Felisbino SL
    Oxid Med Cell Longev; 2020; 2020():2148562. PubMed ID: 32411320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elevation of androgen receptor promotes prostate cancer metastasis by induction of epithelial-mesenchymal transition and reduction of KAT5.
    Lin CY; Jan YJ; Kuo LK; Wang BJ; Huo C; Jiang SS; Chen SC; Kuo YY; Chang CR; Chuu CP
    Cancer Sci; 2018 Nov; 109(11):3564-3574. PubMed ID: 30142696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA interference targeting PSCA suppresses primary tumor growth and metastasis formation of human prostate cancer xenografts in SCID mice.
    Zhao Z; He J; Kang R; Zhao S; Liu L; Li F
    Prostate; 2016 Feb; 76(2):184-98. PubMed ID: 26477693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low molecular weight protein-tyrosine phosphatase is involved in growth inhibition during cell differentiation.
    Fiaschi T; Chiarugi P; Buricchi F; Giannoni E; Taddei ML; Talini D; Cozzi G; Zecchi-Orlandini S; Raugei G; Ramponi G
    J Biol Chem; 2001 Dec; 276(52):49156-63. PubMed ID: 11595742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eukaryotic Translation Initiation Factor 4 Gamma 1 (eIF4G1) is upregulated during Prostate cancer progression and modulates cell growth and metastasis.
    Jaiswal PK; Koul S; Shanmugam PST; Koul HK
    Sci Rep; 2018 May; 8(1):7459. PubMed ID: 29748619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery of Orally Bioavailable Purine-Based Inhibitors of the Low-Molecular-Weight Protein Tyrosine Phosphatase.
    Stanford SM; Diaz MA; Ardecky RJ; Zou J; Roosild T; Holmes ZJ; Nguyen TP; Hedrick MP; Rodiles S; Guan A; Grotegut S; Santelli E; Chung TDY; Jackson MR; Bottini N; Pinkerton AB
    J Med Chem; 2021 May; 64(9):5645-5653. PubMed ID: 33914534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases.
    Lee JK; Edderkaoui M; Truong P; Ohno I; Jang KT; Berti A; Pandol SJ; Gukovskaya AS
    Gastroenterology; 2007 Nov; 133(5):1637-48. PubMed ID: 17983808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.