These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 38295171)
1. Extended theoretical modeling of reverse intersystem crossing for thermally activated delayed fluorescence materials. Hagai M; Inai N; Yasuda T; Fujimoto KJ; Yanai T Sci Adv; 2024 Feb; 10(5):eadk3219. PubMed ID: 38295171 [TBL] [Abstract][Full Text] [Related]
2. The Importance of Vibronic Coupling for Efficient Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence Molecules. Gibson J; Monkman AP; Penfold TJ Chemphyschem; 2016 Oct; 17(19):2956-2961. PubMed ID: 27338655 [TBL] [Abstract][Full Text] [Related]
3. Theoretical study on photophysical properties of a series of functional pyrimidine-based organic light-emitting diodes emitters presenting thermally activated delayed fluorescence. Zhu Q; Guo X; Zhang J J Comput Chem; 2019 Jun; 40(16):1578-1585. PubMed ID: 30802324 [TBL] [Abstract][Full Text] [Related]
4. Recent progress in multi-resonance thermally activated delayed fluorescence emitters with an efficient reverse intersystem crossing process. Luo XF; Xiao X; Zheng YX Chem Commun (Camb); 2024 Jan; 60(9):1089-1099. PubMed ID: 38175168 [TBL] [Abstract][Full Text] [Related]
5. "Rate-limited effect" of reverse intersystem crossing process: the key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes. Cai X; Li X; Xie G; He Z; Gao K; Liu K; Chen D; Cao Y; Su SJ Chem Sci; 2016 Jul; 7(7):4264-4275. PubMed ID: 30155073 [TBL] [Abstract][Full Text] [Related]
6. Regulating the Nature of Triplet Excited States of Thermally Activated Delayed Fluorescence Emitters. Zhao Z; Yan S; Ren Z Acc Chem Res; 2023 Jul; 56(14):1942-1952. PubMed ID: 37364229 [TBL] [Abstract][Full Text] [Related]
7. Charge Transfer Excited State Promoted Multiple Resonance Delayed Fluorescence Emitter for High-Performance Narrowband Electroluminescence. Huang Z; Xie H; Miao J; Wei Y; Zou Y; Hua T; Cao X; Yang C J Am Chem Soc; 2023 Jun; 145(23):12550-12560. PubMed ID: 37276361 [TBL] [Abstract][Full Text] [Related]
8. Narrowband TADF emitters with high utilization of triplet excitons: theoretical insights and molecular design. Zhang Q; Liu T; Shi Z; Zheng Z; Lv C; Wang X; Zhang Y Phys Chem Chem Phys; 2024 Feb; 26(6):5147-5155. PubMed ID: 38259229 [TBL] [Abstract][Full Text] [Related]
9. Theoretical Characterizations of TADF Materials: Roles of Δ Wang L; Ou Q; Peng Q; Shuai Z J Phys Chem A; 2021 Feb; 125(7):1468-1475. PubMed ID: 33587620 [TBL] [Abstract][Full Text] [Related]
10. Spiral Donor Design Strategy for Blue Thermally Activated Delayed Fluorescence Emitters. Li W; Li M; Li W; Xu Z; Gan L; Liu K; Zheng N; Ning C; Chen D; Wu YC; Su SJ ACS Appl Mater Interfaces; 2021 Feb; 13(4):5302-5311. PubMed ID: 33470809 [TBL] [Abstract][Full Text] [Related]
11. Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states. Hosokai T; Matsuzaki H; Nakanotani H; Tokumaru K; Tsutsui T; Furube A; Nasu K; Nomura H; Yahiro M; Adachi C Sci Adv; 2017 May; 3(5):e1603282. PubMed ID: 28508081 [TBL] [Abstract][Full Text] [Related]
12. Computational Investigations of the Detailed Mechanism of Reverse Intersystem Crossing in Inverted Singlet-Triplet Gap Molecules. Valverde D; Ser CT; Ricci G; Jorner K; Pollice R; Aspuru-Guzik A; Olivier Y ACS Appl Mater Interfaces; 2024 Dec; 16(49):66991-67001. PubMed ID: 38728616 [TBL] [Abstract][Full Text] [Related]
13. Vibronic Coupling Effect on the Vibrationally Resolved Electronic Spectra and Intersystem Crossing Rates of a TADF Emitter: 7-PhQAD. Lin S; Pei Z; Zhang B; Ma H; Liang W J Phys Chem A; 2022 Jan; 126(2):239-248. PubMed ID: 34989581 [TBL] [Abstract][Full Text] [Related]
14. Spin-vibronic interaction induced reverse intersystem crossing: A case study with TXO-TPA and TXO-PhCz molecules. Karak P; Ruud K; Chakrabarti S J Chem Phys; 2022 Nov; 157(17):174101. PubMed ID: 36347675 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of thermal-assisted delayed fluorescence in blue organic emitters with large singlet-triplet energy gap. Dias FB Philos Trans A Math Phys Eng Sci; 2015 Jun; 373(2044):. PubMed ID: 25987577 [TBL] [Abstract][Full Text] [Related]
16. Development of an Organic Emitter Exhibiting Reverse Intersystem Crossing Faster than Intersystem Crossing. Okumura R; Tanaka H; Shizu K; Fukushima S; Yasuda Y; Kaji H Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202409670. PubMed ID: 38943493 [TBL] [Abstract][Full Text] [Related]
17. New Direct Approach for Determining the Reverse Intersystem Crossing Rate in Organic Thermally Activated Delayed Fluorescent (TADF) Emitters. Vázquez RJ; Yun JH; Muthike AK; Howell M; Kim H; Madu IK; Kim T; Zimmerman P; Lee JY; Iii TG J Am Chem Soc; 2020 May; 142(18):8074-8079. PubMed ID: 32294387 [TBL] [Abstract][Full Text] [Related]
19. Theoretical Study and Design for Thermally Activated Delayed Fluorescence Emitters with Through-Space Charge Transfer from an Acridine Derivative Donor to an O-Bridged Triphenylboron Boroxy Acceptor. Pei S; Tang H; Liu H; Gao S; Duan Y; Gao Y; Su Z Inorg Chem; 2024 Mar; 63(10):4557-4565. PubMed ID: 38395040 [TBL] [Abstract][Full Text] [Related]
20. Promoting Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence via the Heavy-Atom Effect. Shizu K; Ren Y; Kaji H J Phys Chem A; 2023 Jan; 127(2):439-449. PubMed ID: 36602533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]