These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38295176)

  • 1. Spontaneous exciton dissociation in transition metal dichalcogenide monolayers.
    Handa T; Holbrook M; Olsen N; Holtzman LN; Huber L; Wang HI; Bonn M; Barmak K; Hone JC; Pasupathy AN; Zhu X
    Sci Adv; 2024 Feb; 10(5):eadj4060. PubMed ID: 38295176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors.
    Niehues I; Schmidt R; Drüppel M; Marauhn P; Christiansen D; Selig M; Berghäuser G; Wigger D; Schneider R; Braasch L; Koch R; Castellanos-Gomez A; Kuhn T; Knorr A; Malic E; Rohlfing M; Michaelis de Vasconcellos S; Bratschitsch R
    Nano Lett; 2018 Mar; 18(3):1751-1757. PubMed ID: 29389133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic and Extrinsic Defect-Related Excitons in TMDCs.
    Greben K; Arora S; Harats MG; Bolotin KI
    Nano Lett; 2020 Apr; 20(4):2544-2550. PubMed ID: 32191482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment.
    Han HV; Lu AY; Lu LS; Huang JK; Li H; Hsu CL; Lin YC; Chiu MH; Suenaga K; Chu CW; Kuo HC; Chang WH; Li LJ; Shi Y
    ACS Nano; 2016 Jan; 10(1):1454-61. PubMed ID: 26716765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers.
    Yu Y; Yu Y; Huang L; Peng H; Xiong L; Cao L
    Nano Lett; 2017 Jun; 17(6):3613-3618. PubMed ID: 28505462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between microstructure, defect states, and mobile charge generation in transition metal dichalcogenide heterojunctions.
    Sulas-Kern DB; Zhang H; Li Z; Blackburn JL
    Nanoscale; 2021 May; 13(17):8188-8198. PubMed ID: 33884391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitatively Deciphering Electronic Properties of Defects at Atomically Thin Transition-Metal Dichalcogenides.
    Wu SS; Huang TX; Xu X; Bao YF; Pei XD; Yao X; Cao MF; Lin KQ; Wang X; Wang D; Ren B
    ACS Nano; 2022 Mar; 16(3):4786-4794. PubMed ID: 35224974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit.
    Wierzbowski J; Klein J; Sigger F; Straubinger C; Kremser M; Taniguchi T; Watanabe K; Wurstbauer U; Holleitner AW; Kaniber M; Müller K; Finley JJ
    Sci Rep; 2017 Sep; 7(1):12383. PubMed ID: 28959034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlayer excitons in bilayer MoS
    Niehues I; Blob A; Stiehm T; Michaelis de Vasconcellos S; Bratschitsch R
    Nanoscale; 2019 Jul; 11(27):12788-12792. PubMed ID: 31245801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Exciton Dynamics in Scalable Monolayer MoS
    Tsai HS; Huang YH; Tsai PC; Chen YJ; Ahn H; Lin SY; Lu YJ
    ACS Omega; 2020 May; 5(19):10725-10730. PubMed ID: 32455191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Chemical Modulation of Interlayer Excitons in Atomically Thin Heterostructures.
    Ji J; Delehey CM; Houpt DN; Heighway MK; Lee T; Choi JH
    Nano Lett; 2020 Apr; 20(4):2500-2506. PubMed ID: 32186880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots.
    Fouladi-Oskouei J; Shojaei S; Liu Z
    J Phys Condens Matter; 2018 Apr; 30(14):145301. PubMed ID: 29460851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz Excitonics in Carbon Nanotubes: Exciton Autoionization and Multiplication.
    Bagsican FRG; Wais M; Komatsu N; Gao W; Weber LW; Serita K; Murakami H; Held K; Hegmann FA; Tonouchi M; Kono J; Kawayama I; Battiato M
    Nano Lett; 2020 May; 20(5):3098-3105. PubMed ID: 32227963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutral Exciton Diffusion in Monolayer MoS
    Uddin SZ; Kim H; Lorenzon M; Yeh M; Lien DH; Barnard ES; Htoon H; Weber-Bargioni A; Javey A
    ACS Nano; 2020 Oct; 14(10):13433-13440. PubMed ID: 32909735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Visualization of Exciton Transport in Defective Few-Layer WS
    Liu H; Wang C; Zuo Z; Liu D; Luo J
    Adv Mater; 2020 Jan; 32(2):e1906540. PubMed ID: 31773833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe
    Steinleitner P; Merkl P; Nagler P; Mornhinweg J; Schüller C; Korn T; Chernikov A; Huber R
    Nano Lett; 2017 Mar; 17(3):1455-1460. PubMed ID: 28182430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides.
    Huang L; Krasnok A; Alú A; Yu Y; Neshev D; Miroshnichenko AE
    Rep Prog Phys; 2022 Mar; 85(4):. PubMed ID: 34939940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defects and Defect Engineering of Two-Dimensional Transition Metal Dichalcogenide (2D TMDC) Materials.
    Hossen MF; Shendokar S; Aravamudhan S
    Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring Photoexcited Free Charge Carriers in Mono- to Few-Layer Transition-Metal Dichalcogenides with Steady-State Microwave Conductivity.
    Blackburn JL; Zhang H; Myers AR; Dunklin JR; Coffey DC; Hirsch RN; Vigil-Fowler D; Yun SJ; Cho BW; Lee YH; Miller EM; Rumbles G; Reid OG
    J Phys Chem Lett; 2020 Jan; 11(1):99-107. PubMed ID: 31790587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional transition metal dichalcogenides: interface and defect engineering.
    Hu Z; Wu Z; Han C; He J; Ni Z; Chen W
    Chem Soc Rev; 2018 May; 47(9):3100-3128. PubMed ID: 29509206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.