These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38295308)

  • 21. Elucidating Anionic Redox Chemistry in P3 Layered Cathode for Na-Ion Batteries.
    Jia M; Li H; Qiao Y; Wang L; Cao X; Cabana J; Zhou H
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38249-38255. PubMed ID: 32803951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Annealing in Argon Universally Upgrades the Na-Storage Performance of Mn-Based Layered Oxide Cathodes by Creating Bulk Oxygen Vacancies.
    Jin J; Liu Y; Zhao X; Liu H; Deng S; Shen Q; Hou Y; Qi H; Xing X; Jiao L; Chen J
    Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202219230. PubMed ID: 36780319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cu
    Chen TR; Sheng T; Wu ZG; Li JT; Wang EH; Wu CJ; Li HT; Guo XD; Zhong BH; Huang L; Sun SG
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10147-10156. PubMed ID: 29504762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New Insights into Anionic Redox in P2-Type Oxide Cathodes for Sodium-Ion Batteries.
    Huang ZX; Li K; Cao JM; Zhang KY; Liu HH; Guo JZ; Liu Y; Wang T; Dai D; Zhang XY; Geng H; Wu XL
    Nano Lett; 2024 Oct; 24(43):13615-13623. PubMed ID: 39417609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cu/Ti co-doping boosting P2-type Fe/Mn-based layered oxide cathodes for high-performance sodium storage.
    Yan M; Xu K; Chang YX; Xie ZY; Xu S
    J Colloid Interface Sci; 2023 Dec; 651():696-704. PubMed ID: 37562311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Utilizing Co
    Wang QC; Hu E; Pan Y; Xiao N; Hong F; Fu ZW; Wu XJ; Bak SM; Yang XQ; Zhou YN
    Adv Sci (Weinh); 2017 Nov; 4(11):1700219. PubMed ID: 29201619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Strategy to Mitigate Jahn Teller Effect of Mn-Rich NASICON Framework for Sodium-Ion Batteries.
    Ahsan MT; Ali Z; Qiu D; Biao Z; Wang JJ; Hou Y
    Small; 2024 Oct; 20(43):e2402275. PubMed ID: 39155432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Restraining Oxygen Loss and Boosting Reversible Oxygen Redox in a P2-Type Oxide Cathode by Trace Anion Substitution.
    Zhao C; Yang Q; Geng F; Li C; Zhang N; Ma J; Tong W; Hu B
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):360-369. PubMed ID: 33378178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Entropy Mn/Fe-Based Layered Cathode with Suppressed P2-P'2 Transition and Low-Strain for Fast and Stable Sodium Ion Storage.
    Wang Z; Zhang S; Fu X; Huang R; Huang L; Zhang J; Yang W; Fu F; Sun S
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2378-2388. PubMed ID: 38174712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Zn Doping Strategy to Suppress the Jahn-Teller Effect to Stabilize Mn-Based Layered Oxide Cathode toward High-Performance Potassium Ion Batteries.
    Quan J; Lin H; Li H
    Small; 2024 Oct; 20(40):e2403065. PubMed ID: 38845029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational design of intergrowth P2/O3 biphasic layered structure with reversible anionic redox chemistry and structural evolution for Na-ions batteries.
    Zhang L; Guan C; Zheng J; Li H; Li S; Li S; Lai Y; Zhang Z
    Sci Bull (Beijing); 2023 Jan; 68(2):180-191. PubMed ID: 36658032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Performance P2-Na
    Wang Y; Zhao F; Qian Y; Ji H
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42380-42386. PubMed ID: 30461267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enabling Anionic Redox Stability of P2-Na
    Huang Y; Zhu Y; Nie A; Fu H; Hu Z; Sun X; Haw SC; Chen JM; Chan TS; Yu S; Sun G; Jiang G; Han J; Luo W; Huang Y
    Adv Mater; 2022 Mar; 34(9):e2105404. PubMed ID: 34961966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole-Voltage-Range Solid-Solution Reaction in Layered Oxide Cathode of Sodium-Ion Batteries.
    Ren M; Zhu Z; Liang Z; Huang Y; Zhang T; Hou M; Zhang K; Chen Z; He Y; Ma Z; Chen J; Li F
    Small; 2023 Dec; 19(49):e2304187. PubMed ID: 37603387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elucidating the Redox Behavior in Different P-type Layered Oxides for Sodium-Ion Batteries.
    Chen X; Cheng C; Ding M; Xia Y; Chang LY; Chan TS; Tang H; Zhang N; Zhang L
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43665-43673. PubMed ID: 32876426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Achieving High Stability and Performance in P2-Type Mn-Based Layered Oxides with Tetravalent Cations for Sodium-Ion Batteries.
    Vanaphuti P; Yao Z; Liu Y; Lin Y; Wen J; Yang Z; Feng Z; Ma X; Zauha AC; Wang Y; Wang Y
    Small; 2022 May; 18(19):e2201086. PubMed ID: 35481894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. P2 Orthorhombic Na
    Kwon MS; Lim SG; Park Y; Lee SM; Chung KY; Shin TJ; Lee KT
    ACS Appl Mater Interfaces; 2017 May; 9(17):14758-14768. PubMed ID: 28394115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing High Energy Sodium-Ion Battery Cathodes by Utilizing P2/O3 Biphasic Structure and Lithium Honeycomb Ordering.
    Wang JE; Kim H; Jung YH; Kim DK; Kim DJ
    Small; 2021 Jul; 17(30):e2100146. PubMed ID: 34145759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergistic activation of anionic redox via cosubstitution to construct high-capacity layered oxide cathode materials for sodium-ion batteries.
    Ji H; Ji W; Xue H; Chen G; Qi R; Huang Z; Fang H; Chu M; Liu L; Ma Z; Xu S; Zhai J; Zeng W; Schulz C; Wong D; Chen H; Xu J; Yin W; Pan F; Xiao Y
    Sci Bull (Beijing); 2023 Jan; 68(1):65-76. PubMed ID: 36581534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries.
    Zhang K; Kim D; Hu Z; Park M; Noh G; Yang Y; Zhang J; Lau VW; Chou SL; Cho M; Choi SY; Kang YM
    Nat Commun; 2019 Jan; 10(1):5203. PubMed ID: 30617270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.