BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38295462)

  • 21. The dynamic role of immune checkpoint molecules in diagnosis, prognosis, and treatment of head and neck cancers.
    Mestiri S; El-Ella DMA; Fernandes Q; Bedhiafi T; Almoghrabi S; Akbar S; Inchakalody V; Assami L; Anwar S; Uddin S; Gul ARZ; Al-Muftah M; Merhi M; Raza A; Dermime S
    Biomed Pharmacother; 2024 Feb; 171():116095. PubMed ID: 38183744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Altered expression of TIM-3, LAG-3, IDO, PD-L1, and CTLA-4 during nimotuzumab therapy correlates with responses and prognosis of oral squamous cell carcinoma patients.
    Wang H; Mao L; Zhang T; Zhang L; Wu Y; Guo W; Hu J; Ju H; Ren G
    J Oral Pathol Med; 2019 Sep; 48(8):669-676. PubMed ID: 31132187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Next-Generation Immune Checkpoint LAG-3 and Its Therapeutic Potential in Oncology: Third Time's a Charm.
    Lecocq Q; Keyaerts M; Devoogdt N; Breckpot K
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374804
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LAG-3 : recent developments in combinational therapies in cancer.
    Chavanton A; Mialhe F; Abrey J; Baeza Garcia A; Garrido C
    Cancer Sci; 2024 May; ():. PubMed ID: 38702996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells.
    Kim N; Kim HS
    Front Immunol; 2018; 9():2041. PubMed ID: 30250471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emerging immune checkpoints for cancer therapy.
    Li X; Hu W; Zheng X; Zhang C; Du P; Zheng Z; Yang Y; Wu J; Ji M; Jiang J; Wu C
    Acta Oncol; 2015 Nov; 54(10):1706-13. PubMed ID: 26361073
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immune checkpoint inhibitors and cellular treatment for lymphoma immunotherapy.
    Li F; Chen Y; Pang M; Yang P; Jing H
    Clin Exp Immunol; 2021 Jul; 205(1):1-11. PubMed ID: 33675535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The next generation of immunotherapy: keeping lung cancer in check.
    Somasundaram A; Burns TF
    J Hematol Oncol; 2017 Apr; 10(1):87. PubMed ID: 28434399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models.
    Leone RD; Sun IM; Oh MH; Sun IH; Wen J; Englert J; Powell JD
    Cancer Immunol Immunother; 2018 Aug; 67(8):1271-1284. PubMed ID: 29923026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immune Checkpoint Inhibitors: Recent Clinical Advances and Future Prospects.
    Banday AH; Abdalla M
    Curr Med Chem; 2023; 30(28):3215-3237. PubMed ID: 35986535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive immunophenotyping of solid tumor-infiltrating immune cells reveals the expression characteristics of LAG-3 and its ligands.
    Garman B; Jiang C; Daouti S; Kumar S; Mehta P; Jacques MK; Menard L; Manjarrez-Orduno N; Dolfi S; Mukherjee P; Rai SC; Lako A; Koenitzer JD; David JM
    Front Immunol; 2023; 14():1151748. PubMed ID: 37795090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel targets for immune-checkpoint inhibition in cancer.
    Borgeaud M; Sandoval J; Obeid M; Banna G; Michielin O; Addeo A; Friedlaender A
    Cancer Treat Rev; 2023 Nov; 120():102614. PubMed ID: 37603905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lymphocyte-activation gene-3, an important immune checkpoint in cancer.
    He Y; Rivard CJ; Rozeboom L; Yu H; Ellison K; Kowalewski A; Zhou C; Hirsch FR
    Cancer Sci; 2016 Sep; 107(9):1193-7. PubMed ID: 27297395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immune checkpoints and cancer development: Therapeutic implications and future directions.
    Mehdizadeh S; Bayatipoor H; Pashangzadeh S; Jafarpour R; Shojaei Z; Motallebnezhad M
    Pathol Res Pract; 2021 Jul; 223():153485. PubMed ID: 34022684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immune checkpoint biology in health & disease: Immune checkpoint biology and autoimmunity in cancer patients.
    Van Mol P; Donders E; Lambrechts D; Wauters E
    Int Rev Cell Mol Biol; 2024; 382():181-206. PubMed ID: 38225103
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blockade of PD-1 and LAG-3 expression on CD8+ T cells promotes the tumoricidal effects of CD8+ T cells.
    Ma J; Yan S; Zhao Y; Yan H; Zhang Q; Li X
    Front Immunol; 2023; 14():1265255. PubMed ID: 37841254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PD-L1-Independent Mechanisms Control the Resistance of Melanoma to CD4
    Goding SR; Wilson KA; Rosinsky C; Antony PA
    J Immunol; 2018 May; 200(9):3304-3311. PubMed ID: 29602773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advancement of anti-LAG-3 in cancer therapy.
    Li Y; Ju M; Miao Y; Zhao L; Xing L; Wei M
    FASEB J; 2023 Nov; 37(11):e23236. PubMed ID: 37846808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting LAG-3 and PD-1 to Enhance T Cell Activation by Antigen-Presenting Cells.
    Lichtenegger FS; Rothe M; Schnorfeil FM; Deiser K; Krupka C; Augsberger C; Schlüter M; Neitz J; Subklewe M
    Front Immunol; 2018; 9():385. PubMed ID: 29535740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice.
    Foy SP; Sennino B; dela Cruz T; Cote JJ; Gordon EJ; Kemp F; Xavier V; Franzusoff A; Rountree RB; Mandl SJ
    PLoS One; 2016; 11(2):e0150084. PubMed ID: 26910562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.