BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 38295577)

  • 1. Reactive oxygen species generation by reverse electron transfer at mitochondrial complex I under simulated early reperfusion conditions.
    Tabata Fukushima C; Dancil IS; Clary H; Shah N; Nadtochiy SM; Brookes PS
    Redox Biol; 2024 Apr; 70():103047. PubMed ID: 38295577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive Oxygen Species Generation by Reverse Electron Transfer at Mitochondrial Complex I Under Simulated Early Reperfusion Conditions.
    Fukushima CT; Dancil IS; Clary H; Shah N; Nadtochiy SM; Brookes PS
    bioRxiv; 2023 Nov; ():. PubMed ID: 38045326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid enhancement of ROS generation by complex-I reverse electron transport is balanced by acid inhibition of complex-II: Relevance for tissue reperfusion injury.
    Milliken AS; Kulkarni CA; Brookes PS
    Redox Biol; 2020 Oct; 37():101733. PubMed ID: 33007502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
    Korge P; John SA; Calmettes G; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9896-9905. PubMed ID: 28450394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
    Chouchani ET; Pell VR; Gaude E; Aksentijević D; Sundier SY; Robb EL; Logan A; Nadtochiy SM; Ord ENJ; Smith AC; Eyassu F; Shirley R; Hu CH; Dare AJ; James AM; Rogatti S; Hartley RC; Eaton S; Costa ASH; Brookes PS; Davidson SM; Duchen MR; Saeb-Parsy K; Shattock MJ; Robinson AJ; Work LM; Frezza C; Krieg T; Murphy MP
    Nature; 2014 Nov; 515(7527):431-435. PubMed ID: 25383517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse electron transfer results in a loss of flavin from mitochondrial complex I: Potential mechanism for brain ischemia reperfusion injury.
    Stepanova A; Kahl A; Konrad C; Ten V; Starkov AS; Galkin A
    J Cereb Blood Flow Metab; 2017 Dec; 37(12):3649-3658. PubMed ID: 28914132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibiting Succinate Release Worsens Cardiac Reperfusion Injury by Enhancing Mitochondrial Reactive Oxygen Species Generation.
    Milliken AS; Nadtochiy SM; Brookes PS
    J Am Heart Assoc; 2022 Jul; 11(13):e026135. PubMed ID: 35766275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Succinate Accumulation Induces ROS Generation in
    Kamarauskaite J; Baniene R; Trumbeckas D; Strazdauskas A; Trumbeckaite S
    Biomed Res Int; 2020; 2020():8855585. PubMed ID: 33102598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria.
    Chen Q; Moghaddas S; Hoppel CL; Lesnefsky EJ
    Am J Physiol Cell Physiol; 2008 Feb; 294(2):C460-6. PubMed ID: 18077608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
    Grivennikova VG; Kareyeva AV; Vinogradov AD
    Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of mitochondrial superoxide production by reverse electron transport at complex I.
    Robb EL; Hall AR; Prime TA; Eaton S; Szibor M; Viscomi C; James AM; Murphy MP
    J Biol Chem; 2018 Jun; 293(25):9869-9879. PubMed ID: 29743240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of succinate and ROS in reperfusion injury - A critical appraisal.
    Andrienko TN; Pasdois P; Pereira GC; Ovens MJ; Halestrap AP
    J Mol Cell Cardiol; 2017 Sep; 110():1-14. PubMed ID: 28689004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A.
    Stepanova A; Konrad C; Manfredi G; Springett R; Ten V; Galkin A
    J Neurochem; 2019 Mar; 148(6):731-745. PubMed ID: 30582748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport.
    Schönfeld P; Wojtczak L
    Biochim Biophys Acta; 2007 Aug; 1767(8):1032-40. PubMed ID: 17588527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III.
    Dröse S; Hanley PJ; Brandt U
    Biochim Biophys Acta; 2009 Jun; 1790(6):558-65. PubMed ID: 19364480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xenotransplantation of mitochondrial electron transfer enzyme, Ndi1, in myocardial reperfusion injury.
    Perry CN; Huang C; Liu W; Magee N; Carreira RS; Gottlieb RA
    PLoS One; 2011 Feb; 6(2):e16288. PubMed ID: 21339825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial generation of reactive oxygen species is enhanced at the Q(o) site of the complex III in the myocardium of Trypanosoma cruzi-infected mice: beneficial effects of an antioxidant.
    Wen JJ; Garg NJ
    J Bioenerg Biomembr; 2008 Dec; 40(6):587-98. PubMed ID: 19009337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.