BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38295962)

  • 1. Simultaneous utilization of glucose and xylose by metabolically engineered Pseudomonas putida for the production of 3-hydroxypropionic acid.
    Tiwari R; Sathesh-Prabu C; Kim Y; Kuk Lee S
    Bioresour Technol; 2024 Mar; 395():130389. PubMed ID: 38295962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering.
    Ling C; Peabody GL; Salvachúa D; Kim YM; Kneucker CM; Calvey CH; Monninger MA; Munoz NM; Poirier BC; Ramirez KJ; St John PC; Woodworth SP; Magnuson JK; Burnum-Johnson KE; Guss AM; Johnson CW; Beckham GT
    Nat Commun; 2022 Aug; 13(1):4925. PubMed ID: 35995792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
    Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D
    Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered
    Kildegaard KR; Wang Z; Chen Y; Nielsen J; Borodina I
    Metab Eng Commun; 2015 Dec; 2():132-136. PubMed ID: 34150516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose.
    Meijnen JP; de Winde JH; Ruijssenaars HJ
    Appl Environ Microbiol; 2008 Aug; 74(16):5031-7. PubMed ID: 18586973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy.
    Meijnen JP; Verhoef S; Briedjlal AA; de Winde JH; Ruijssenaars HJ
    Appl Microbiol Biotechnol; 2011 May; 90(3):885-93. PubMed ID: 21287166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid.
    Elmore JR; Dexter GN; Salvachúa D; O'Brien M; Klingeman DM; Gorday K; Michener JK; Peterson DJ; Beckham GT; Guss AM
    Metab Eng; 2020 Nov; 62():62-71. PubMed ID: 32828991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of 3-hydroxypropionic acid from glucose and xylose by alleviation of metabolic congestion due to glycerol flux in engineered Escherichia coli.
    Heo W; Kim JH; Kim S; Kim KH; Kim HJ; Seo JH
    Bioresour Technol; 2019 Aug; 285():121320. PubMed ID: 30978585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose.
    Liu H; Chen Y; Wang S; Liu Y; Zhao W; Huo K; Guo H; Xiong W; Wang S; Yang C; Liu R
    Int J Biol Macromol; 2023 Dec; 253(Pt 2):126732. PubMed ID: 37678685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous conversion of glucose and xylose to 3-hydroxypropionic acid in engineered Escherichia coli by modulation of sugar transport and glycerol synthesis.
    Jung IY; Lee JW; Min WK; Park YC; Seo JH
    Bioresour Technol; 2015 Dec; 198():709-16. PubMed ID: 26441028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering co-utilization of glucose and xylose for chemical overproduction from lignocellulose.
    Gao J; Yu W; Li Y; Jin M; Yao L; Zhou YJ
    Nat Chem Biol; 2023 Dec; 19(12):1524-1531. PubMed ID: 37620399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved production of 3-hydroxypropionic acid in engineered Escherichia coli by rebalancing heterologous and endogenous synthetic pathways.
    Lee TY; Min WK; Kim HJ; Seo JH
    Bioresour Technol; 2020 Mar; 299():122600. PubMed ID: 31864087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli.
    Cheng Z; Jiang J; Wu H; Li Z; Ye Q
    Bioresour Technol; 2016 Jan; 200():897-904. PubMed ID: 26606325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440.
    Bentley GJ; Narayanan N; Jha RK; Salvachúa D; Elmore JR; Peabody GL; Black BA; Ramirez K; De Capite A; Michener WE; Werner AZ; Klingeman DM; Schindel HS; Nelson R; Foust L; Guss AM; Dale T; Johnson CW; Beckham GT
    Metab Eng; 2020 May; 59():64-75. PubMed ID: 31931111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities.
    Novy V; Brunner B; Nidetzky B
    Microb Cell Fact; 2018 Apr; 17(1):59. PubMed ID: 29642896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing 3-hydroxypropionic acid production in combination with sugar supply engineering by cell surface-display and metabolic engineering of Schizosaccharomyces pombe.
    Takayama S; Ozaki A; Konishi R; Otomo C; Kishida M; Hirata Y; Matsumoto T; Tanaka T; Kondo A
    Microb Cell Fact; 2018 Nov; 17(1):176. PubMed ID: 30424766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of type II methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway.
    Nguyen DTN; Lee OK; Lim C; Lee J; Na JG; Lee EY
    Metab Eng; 2020 May; 59():142-150. PubMed ID: 32061966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V; Brunner B; Müller G; Nidetzky B
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a Xylose-Utilizing
    Yao J; Wang J; Ju Y; Dong Z; Song X; Chen L; Zhang W
    ACS Synth Biol; 2022 Feb; 11(2):678-688. PubMed ID: 35119824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.