These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38295962)

  • 21. Inducible and tunable gene expression systems for Pseudomonas putida KT2440.
    Sathesh-Prabu C; Tiwari R; Kim D; Lee SK
    Sci Rep; 2021 Sep; 11(1):18079. PubMed ID: 34508142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose.
    Dvořák P; de Lorenzo V
    Metab Eng; 2018 Jul; 48():94-108. PubMed ID: 29864584
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient Production of 1,3-Propanediol from Diverse Carbohydrates via a Non-natural Pathway Using 3-Hydroxypropionic Acid as an Intermediate.
    Li Z; Wu Z; Cen X; Liu Y; Zhang Y; Liu D; Chen Z
    ACS Synth Biol; 2021 Mar; 10(3):478-486. PubMed ID: 33625207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum.
    Zhang Y; Vadlani PV; Kumar A; Hardwidge PR; Govind R; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):279-88. PubMed ID: 26433970
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 27. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect.
    Lu H; Zhao X; Wang Y; Ding X; Wang J; Garza E; Manow R; Iverson A; Zhou S
    BMC Biotechnol; 2016 Feb; 16():19. PubMed ID: 26895857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptive laboratory evolution induced novel mutations in Zymomonas mobilis ATCC ZW658: a potential platform for co-utilization of glucose and xylose.
    Sarkar P; Mukherjee M; Goswami G; Das D
    J Ind Microbiol Biotechnol; 2020 Mar; 47(3):329-341. PubMed ID: 32152759
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-cell density culture of poly(lactate-co-3-hydroxybutyrate)-producing Escherichia coli by using glucose/xylose-switching fed-batch jar fermentation.
    Hori C; Yamazaki T; Ribordy G; Takisawa K; Matsumoto K; Ooi T; Zinn M; Taguchi S
    J Biosci Bioeng; 2019 Jun; 127(6):721-725. PubMed ID: 30573386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae.
    Shen MH; Song H; Li BZ; Yuan YJ
    Biotechnol Lett; 2015 May; 37(5):1031-6. PubMed ID: 25548118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic and regulatory rearrangements underlying efficient D-xylose utilization in engineered Pseudomonas putida S12.
    Meijnen JP; de Winde JH; Ruijssenaars HJ
    J Biol Chem; 2012 Apr; 287(18):14606-14. PubMed ID: 22416130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving 3-hydroxypropionic acid production in E. coli by in silico prediction of new metabolic targets.
    Chaves GL; Batista RS; Cunha JS; Oliveira DB; da Silva MR; Pisani GFD; Selistre-de-Araújo HS; Zangirolami TC; da Silva AJ
    N Biotechnol; 2022 Dec; 72():80-88. PubMed ID: 36272546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose.
    Fu H; Yu L; Lin M; Wang J; Xiu Z; Yang ST
    Metab Eng; 2017 Mar; 40():50-58. PubMed ID: 28040464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains.
    Poblete-Castro I; Rodriguez AL; Lam CM; Kessler W
    J Microbiol Biotechnol; 2014 Jan; 24(1):59-69. PubMed ID: 24150495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Establishment of oxidative D-xylose metabolism in Pseudomonas putida S12.
    Meijnen JP; de Winde JH; Ruijssenaars HJ
    Appl Environ Microbiol; 2009 May; 75(9):2784-91. PubMed ID: 19270113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of 3-hydroxypropionic acid from acetate using metabolically-engineered and glucose-grown Escherichia coli.
    Lama S; Kim Y; Nguyen DT; Im CH; Sankaranarayanan M; Park S
    Bioresour Technol; 2021 Jan; 320(Pt A):124362. PubMed ID: 33186840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic Engineering of
    Benninghaus L; Walter T; Mindt M; Risse JM; Wendisch VF
    J Agric Food Chem; 2021 Sep; 69(34):9849-9858. PubMed ID: 34465093
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.