These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38296061)

  • 1. A European-scale analysis reveals the complex roles of anthropogenic and climatic factors in driving the initiation of large wildfires.
    Ochoa C; Bar-Massada A; Chuvieco E
    Sci Total Environ; 2024 Mar; 917():170443. PubMed ID: 38296061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive model of spatial scale of forest fire driving factors: a case study of Yunnan Province, China.
    Li W; Xu Q; Yi J; Liu J
    Sci Rep; 2022 Nov; 12(1):19029. PubMed ID: 36348041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rethinking the focus on forest fires in federal wildland fire management: Landscape patterns and trends of non-forest and forest burned area.
    Crist MR
    J Environ Manage; 2023 Feb; 327():116718. PubMed ID: 36565577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuel reduction burning reduces wildfire severity during extreme fire events in south-eastern Australia.
    Collins L; Trouvé R; Baker PJ; Cirulus B; Nitschke CR; Nolan RH; Smith L; Penman TD
    J Environ Manage; 2023 Oct; 343():118171. PubMed ID: 37245307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires.
    Prichard SJ; Povak NA; Kennedy MC; Peterson DW
    Ecol Appl; 2020 Jul; 30(5):e02104. PubMed ID: 32086976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of regional wildfire activity in the probabilistic Bayesian framework of Firelihood.
    Pimont F; Fargeon H; Opitz T; Ruffault J; Barbero R; Martin-StPaul N; Rigolot E; RiviÉre M; Dupuy JL
    Ecol Appl; 2021 Jul; 31(5):e02316. PubMed ID: 33636026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing and testing models of the drivers of anthropogenic and lightning-caused wildfire ignitions in south-eastern Australia.
    Clarke H; Gibson R; Cirulis B; Bradstock RA; Penman TD
    J Environ Manage; 2019 Apr; 235():34-41. PubMed ID: 30669091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can wildland fire management alter 21st-century subalpine fire and forests in Grand Teton National Park, Wyoming, USA?
    Hansen WD; Abendroth D; Rammer W; Seidl R; Turner MG
    Ecol Appl; 2020 Mar; 30(2):e02030. PubMed ID: 31674698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia.
    Mundo IA; Wiegand T; Kanagaraj R; Kitzberger T
    J Environ Manage; 2013 Jul; 123():77-87. PubMed ID: 23583868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global and regional analysis of climate and human drivers of wildfire.
    Aldersley A; Murray SJ; Cornell SE
    Sci Total Environ; 2011 Aug; 409(18):3472-81. PubMed ID: 21689843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drivers and implications of the extreme 2022 wildfire season in Southwest Europe.
    Rodrigues M; Cunill Camprubí À; Balaguer-Romano R; Coco Megía CJ; Castañares F; Ruffault J; Fernandes PM; Resco de Dios V
    Sci Total Environ; 2023 Feb; 859(Pt 2):160320. PubMed ID: 36410479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting potential wildfire severity across Southern Europe with global data sources.
    Fernández-García V; Beltrán-Marcos D; Fernández-Guisuraga JM; Marcos E; Calvo L
    Sci Total Environ; 2022 Jul; 829():154729. PubMed ID: 35331756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.
    Harvey BJ; Donato DC; Turner MG
    Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.
    Modugno S; Balzter H; Cole B; Borrelli P
    J Environ Manage; 2016 May; 172():112-26. PubMed ID: 26922502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal feature attribution of European summer wildfires with Explainable Artificial Intelligence (XAI).
    Li H; Vulova S; Rocha AD; Kleinschmit B
    Sci Total Environ; 2024 Mar; 916():170330. PubMed ID: 38278254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogeographic variability in wildfire severity and post-fire vegetation recovery across the European forests via remote sensing-derived spectral metrics.
    Nolè A; Rita A; Spatola MF; Borghetti M
    Sci Total Environ; 2022 Jun; 823():153807. PubMed ID: 35150679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial analysis and machine learning prediction of forest fire susceptibility: a comprehensive approach for effective management and mitigation.
    Mishra M; Guria R; Baraj B; Nanda AP; Santos CAG; Silva RMD; Laksono FAT
    Sci Total Environ; 2024 May; 926():171713. PubMed ID: 38503392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The drivers of wildfire enlargement do not exhibit scale thresholds in southeastern Australian forests.
    Price OF; Penman T; Bradstock R; Borah R
    J Environ Manage; 2016 Oct; 181():208-217. PubMed ID: 27353371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal prediction of wildfire size extremes with Bayesian finite sample maxima.
    Joseph MB; Rossi MW; Mietkiewicz NP; Mahood AL; Cattau ME; St Denis LA; Nagy RC; Iglesias V; Abatzoglou JT; Balch JK
    Ecol Appl; 2019 Sep; 29(6):e01898. PubMed ID: 30980779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corralling a black swan: natural range of variation in a forest landscape driven by rare, extreme events.
    Donato DC; Halofsky JS; Reilly MJ
    Ecol Appl; 2020 Jan; 30(1):e02013. PubMed ID: 31594028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.