These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38296108)

  • 1. Opportunities for Improving Glaucoma Clinical Trials via Deep Learning-Based Identification of Patients with Low Visual Field Variability.
    Wang R; Bradley C; Herbert P; Hou K; Hager GD; Breininger K; Unberath M; Ramulu P; Yohannan J
    Ophthalmol Glaucoma; 2024; 7(3):222-231. PubMed ID: 38296108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forecasting Risk of Future Rapid Glaucoma Worsening Using Early Visual Field, OCT, and Clinical Data.
    Herbert P; Hou K; Bradley C; Hager G; Boland MV; Ramulu P; Unberath M; Yohannan J
    Ophthalmol Glaucoma; 2023; 6(5):466-473. PubMed ID: 36944385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Impact of Social Vulnerability on Structural and Functional Glaucoma Severity, Worsening, and Variability.
    Almidani L; Bradley C; Herbert P; Ramulu P; Yohannan J
    Ophthalmol Glaucoma; 2024; 7(4):380-390. PubMed ID: 38636704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Visual Field Worsening with Longitudinal OCT Data Using a Gated Transformer Network.
    Hou K; Bradley C; Herbert P; Johnson C; Wall M; Ramulu PY; Unberath M; Yohannan J
    Ophthalmology; 2023 Aug; 130(8):854-862. PubMed ID: 37003520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning model to predict visual field in central 10° from optical coherence tomography measurement in glaucoma.
    Hashimoto Y; Asaoka R; Kiwaki T; Sugiura H; Asano S; Murata H; Fujino Y; Matsuura M; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K
    Br J Ophthalmol; 2021 Apr; 105(4):507-513. PubMed ID: 32593978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma.
    Wang M; Pasquale LR; Shen LQ; Boland MV; Wellik SR; De Moraes CG; Myers JS; Wang H; Baniasadi N; Li D; Silva RNE; Bex PJ; Elze T
    Ophthalmology; 2018 Mar; 125(3):352-360. PubMed ID: 29103791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of visual field progression with serial optic disc photographs using deep learning.
    Mohammadzadeh V; Wu S; Davis T; Vepa A; Morales E; Besharati S; Edalati K; Martinyan J; Rafiee M; Martynian A; Scalzo F; Caprioli J; Nouri-Mahdavi K
    Br J Ophthalmol; 2024 Jul; 108(8):1107-1113. PubMed ID: 37833037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT.
    Christopher M; Bowd C; Proudfoot JA; Belghith A; Goldbaum MH; Rezapour J; Fazio MA; Girkin CA; De Moraes G; Liebmann JM; Weinreb RN; Zangwill LM
    Ophthalmology; 2021 Nov; 128(11):1534-1548. PubMed ID: 33901527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing the Accuracy of Peripapillary OCT Scans and Visual Fields to Detect Glaucoma Worsening.
    Bradley C; Herbert P; Hou K; Unberath M; Ramulu P; Yohannan J
    Ophthalmology; 2023 Jun; 130(6):631-639. PubMed ID: 36754173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining optical coherence tomography with visual field data to rapidly detect disease progression in glaucoma: a diagnostic accuracy study.
    Garway-Heath DF; Zhu H; Cheng Q; Morgan K; Frost C; Crabb DP; Ho TA; Agiomyrgiannakis Y
    Health Technol Assess; 2018 Jan; 22(4):1-106. PubMed ID: 29384083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction and Detection of Glaucomatous Visual Field Progression Using Deep Learning on Macular Optical Coherence Tomography.
    Huang J; Galal G; Mukhin V; Etemadi M; Tanna AP
    J Glaucoma; 2024 Apr; 33(4):246-253. PubMed ID: 38245813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-label transformer-based deep learning approach to predict focal visual field progression.
    Chen L; Tseng VS; Tsung TH; Lu DW
    Graefes Arch Clin Exp Ophthalmol; 2024 Jul; 262(7):2227-2235. PubMed ID: 38334809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing Glaucoma Progression Using Machine Learning Trained on Longitudinal Visual Field and Clinical Data.
    Dixit A; Yohannan J; Boland MV
    Ophthalmology; 2021 Jul; 128(7):1016-1026. PubMed ID: 33359887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sample Size Requirements of Glaucoma Clinical Trials When Using Combined Optical Coherence Tomography and Visual Field Endpoints.
    Wu Z; Medeiros FA
    Sci Rep; 2019 Dec; 9(1):18886. PubMed ID: 31827169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformer-Based Deep Learning Prediction of 10-Degree Humphrey Visual Field Tests From 24-Degree Data.
    Shi M; Lokhande A; Tian Y; Luo Y; Eslami M; Kazeminasab S; Elze T; Shen LQ; Pasquale LR; Wellik SR; De Moraes CG; Myers JS; Zebardast N; Friedman DS; Boland MV; Wang M
    Transl Vis Sci Technol; 2024 Aug; 13(8):11. PubMed ID: 39110574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the Glaucomatous Central 10-Degree Visual Field From Optical Coherence Tomography Using Deep Learning and Tensor Regression.
    Xu L; Asaoka R; Kiwaki T; Murata H; Fujino Y; Matsuura M; Hashimoto Y; Asano S; Miki A; Mori K; Ikeda Y; Kanamoto T; Yamagami J; Inoue K; Tanito M; Yamanishi K
    Am J Ophthalmol; 2020 Oct; 218():304-313. PubMed ID: 32387432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of focal lamina cribrosa defect on glaucomatous visual field progression.
    Faridi OS; Park SC; Kabadi R; Su D; De Moraes CG; Liebmann JM; Ritch R
    Ophthalmology; 2014 Aug; 121(8):1524-30. PubMed ID: 24697910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual Field Outcomes in the Tube Versus Trabeculectomy Study.
    Swaminathan SS; Jammal AA; Kornmann HL; Chen PP; Feuer WJ; Medeiros FA; Gedde SJ;
    Ophthalmology; 2020 Sep; 127(9):1162-1169. PubMed ID: 32327255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning model incorporating spatial and temporal information successfully detects visual field worsening using a consensus based approach.
    Sabharwal J; Hou K; Herbert P; Bradley C; Johnson CA; Wall M; Ramulu PY; Unberath M; Yohannan J
    Sci Rep; 2023 Jan; 13(1):1041. PubMed ID: 36658309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Transitioning from SITA Standard to SITA Faster on Visual Field Performance.
    Pham AT; Ramulu PY; Boland MV; Yohannan J
    Ophthalmology; 2021 Oct; 128(10):1417-1425. PubMed ID: 33798655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.