These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38296621)

  • 1. [TRIP13 Enhances Radioresistance of Lung Adenocarcinoma Cells 
through the Homologous Recombination Pathway].
    Ge S; Gu R; Yang X; Xu C; Wang S; Zhu G
    Zhongguo Fei Ai Za Zhi; 2024 Jan; 27(1):1-12. PubMed ID: 38296621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRIP13 promotes lung cancer cell growth and metastasis through AKT/mTORC1/c-Myc signaling.
    Cai W; Ni W; Jin Y; Li Y
    Cancer Biomark; 2021; 30(2):237-248. PubMed ID: 33136091
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Wu C; Dong B; Huang L; Liu Y; Ye G; Li S; Qi Y
    Front Oncol; 2021; 11():754290. PubMed ID: 34745988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of radiotherapy-related autophagy genes in the prognosis and immune infiltration in lung adenocarcinoma.
    Gao J; Lu F; Yan J; Wang R; Xia Y; Wang L; Li L; Chang L; Li W
    Front Immunol; 2022; 13():992626. PubMed ID: 36311724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Key Genes and Signaling Pathways in Entrectinibresistant Non-small Cell Lung Cancer Using Bioinformatic Analysis and Experimental Verification.
    Chen X; Zhao X; Li D; Zha W
    Curr Med Chem; 2024 Aug; ():. PubMed ID: 39108112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thyroid hormone receptor interactor 13 (TRIP13) overexpression associated with tumor progression and poor prognosis in lung adenocarcinoma.
    Li W; Zhang G; Li X; Wang X; Li Q; Hong L; Shen Y; Zhao C; Gong X; Chen Y; Zhou J
    Biochem Biophys Res Commun; 2018 May; 499(3):416-424. PubMed ID: 29567476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of CDT1 as a prognostic marker in human lung adenocarcinoma using bioinformatics approaches.
    Jiang J; Zhang Y; Wang J; Yang X; Ren X; Huang H; Wang J; Lu J; Zhong Y; Lin Z; Lin X; Jia Y; Lin S
    PeerJ; 2023; 11():e16166. PubMed ID: 37790630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PKMYT1 as a Potential Target to Improve the Radiosensitivity of Lung Adenocarcinoma.
    Long HP; Liu JQ; Yu YY; Qiao Q; Li G
    Front Genet; 2020; 11():376. PubMed ID: 32411179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Expression of Cancer-IgG Is Associated With Poor Prognosis and Radioresistance
    Yang X; Wang G; You J; Gu R; Xu X; Xu C; Wang H; Zhao R; Qiu X; Zhu G
    Front Oncol; 2021; 11():675397. PubMed ID: 34150640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of genes associated with prognosis of lung adenocarcinoma based on GEO and TCGA databases.
    Yu Y; Tian X
    Medicine (Baltimore); 2020 May; 99(19):e20183. PubMed ID: 32384511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated bioinformatics analysis reveals CDK1 and PLK1 as potential therapeutic targets of lung adenocarcinoma.
    Li S; Li H; Cao Y; Geng H; Ren F; Li K; Dai C; Li N
    Medicine (Baltimore); 2021 Aug; 100(32):e26474. PubMed ID: 34397869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated bioinformatics analysis of microarray data from the GEO database to identify the candidate genes linked to poor prognosis in lung adenocarcinoma.
    Liu X; Li L; Xie X; Zhuang D; Hu C
    Technol Health Care; 2023; 31(2):579-592. PubMed ID: 36336945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Golgi Phosphoprotein 3 Confers Radioresistance via Stabilizing EGFR in Lung Adenocarcinoma.
    Chen G; Kong P; Yang M; Hu W; Prise KM; Yu KN; Cui S; Qin F; Meng G; Almahi WA; Nie L; Han W
    Int J Radiat Oncol Biol Phys; 2022 Apr; 112(5):1216-1228. PubMed ID: 34838866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of key genes and biological pathways in lung adenocarcinoma via bioinformatics analysis.
    Wang Y; Zhou Z; Chen L; Li Y; Zhou Z; Chu X
    Mol Cell Biochem; 2021 Feb; 476(2):931-939. PubMed ID: 33130972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Expression of
    Deng H; Huang Y; Wang L; Chen M
    Biomed Res Int; 2020; 2020():2071593. PubMed ID: 33134373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Potential Key Genes and Prognostic Biomarkers of Lung Cancer Based on Bioinformatics.
    Cai K; Xie Z; Liu Y; Wu J; Song H; Liu W; Wang X; Xiong Y; Gan S; Sun Y
    Biomed Res Int; 2023; 2023():2152432. PubMed ID: 36714024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SOX2 Promotes Radioresistance in Non-small Cell Lung Cancer by Regulating Tumor Cells Dedifferentiation.
    Wang S; Li Z; Li P; Li L; Liu Y; Feng Y; Li R; Xia S
    Int J Med Sci; 2023; 20(6):781-796. PubMed ID: 37213675
    [No Abstract]   [Full Text] [Related]  

  • 18. Bioinformatic analysis revealing mitotic spindle assembly regulated NDC80 and MAD2L1 as prognostic biomarkers in non-small cell lung cancer development.
    Wei R; Wang Z; Zhang Y; Wang B; Shen N; E L; Li X; Shang L; Shang Y; Yan W; Zhang X; Ma W; Wang C
    BMC Med Genomics; 2020 Aug; 13(1):112. PubMed ID: 32795325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Expression of
    Chen Y; Zhou M; Gu X; Wang L; Wang C
    Dis Markers; 2022; 2022():8789515. PubMed ID: 35855850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonnegative matrix factorization-based bioinformatics analysis reveals that TPX2 and SELENBP1 are two predictors of the inner sub-consensuses of lung adenocarcinoma.
    Wang H; Wang X; Xu L; Cao H; Zhang J
    Cancer Med; 2021 Dec; 10(24):9058-9077. PubMed ID: 34734491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.