These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 38296795)
1. 3D-Printed Personalized Lattice Implant as an Innovative Strategy to Reconstruct Geographic Defects in Load-Bearing Bones. Li Z; Lu M; Zhang Y; Wang J; Wang Y; Gong T; He X; Luo Y; Zhou Y; Min L; Tu C Orthop Surg; 2024 Apr; 16(4):821-829. PubMed ID: 38296795 [TBL] [Abstract][Full Text] [Related]
2. Treatment of pelvic giant cell tumor by wide resection with patient-specific bone-cutting guide and reconstruction with 3D-printed personalized implant. Li Z; Lu M; Min L; Luo Y; Tu C J Orthop Surg Res; 2023 Sep; 18(1):648. PubMed ID: 37658436 [TBL] [Abstract][Full Text] [Related]
3. Biomimetic design and clinical application of Ti-6Al-4V lattice hemipelvis prosthesis for pelvic reconstruction. Li Z; Luo Y; Lu M; Wang Y; Gong T; He X; Hu X; Long J; Zhou Y; Min L; Tu C J Orthop Surg Res; 2024 Apr; 19(1):210. PubMed ID: 38561755 [TBL] [Abstract][Full Text] [Related]
4. 3D-printed Personalized Porous Acetabular Component to Reconstruct Extensive Acetabular Bone Defects in Primary Hip Arthroplasty. Li Z; Luo Y; Lu M; Wang Y; Gong T; Hu X; He X; Zhou Y; Min L; Tu C Orthop Surg; 2024 Jul; 16(7):1642-1647. PubMed ID: 38837297 [TBL] [Abstract][Full Text] [Related]
5. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. Carpenter RD; Klosterhoff BS; Torstrick FB; Foley KT; Burkus JK; Lee CSD; Gall K; Guldberg RE; Safranski DL J Mech Behav Biomed Mater; 2018 Apr; 80():68-76. PubMed ID: 29414477 [TBL] [Abstract][Full Text] [Related]
6. Advanced Pelvic Girdle Reconstruction with three dimensional-printed Custom Hemipelvic Endoprostheses following Pelvic Tumour Resection. Hu X; Lu M; Wang Y; Luo Y; Zhou Y; Yang X; Tu C; Min L Int Orthop; 2024 Aug; 48(8):2217-2231. PubMed ID: 38775826 [TBL] [Abstract][Full Text] [Related]
7. Fu J; Xiang Y; Ni M; Qu X; Zhou Y; Hao L; Zhang G; Chen J Biomed Res Int; 2020; 2020():4542302. PubMed ID: 33335923 [TBL] [Abstract][Full Text] [Related]
8. Is three-dimensional-printed custom-made ultra-short stem with a porous structure an acceptable reconstructive alternative in peri-knee metaphysis for the tumorous bone defect? Wang J; An J; Lu M; Zhang Y; Lin J; Luo Y; Zhou Y; Min L; Tu C World J Surg Oncol; 2021 Aug; 19(1):235. PubMed ID: 34365976 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale Morphologies on the Surface of 3D-Printed Titanium Implants for Improved Osseointegration: A Systematic Review of the Literature. Yang S; Jiang W; Ma X; Wang Z; Sah RL; Wang J; Sun Y Int J Nanomedicine; 2023; 18():4171-4191. PubMed ID: 37525692 [TBL] [Abstract][Full Text] [Related]
10. Integrating 3D Printing and Biomimetic Mineralization for Personalized Enhanced Osteogenesis, Angiogenesis, and Osteointegration. Ma L; Wang X; Zhao N; Zhu Y; Qiu Z; Li Q; Zhou Y; Lin Z; Li X; Zeng X; Xia H; Zhong S; Zhang Y; Wang Y; Mao C ACS Appl Mater Interfaces; 2018 Dec; 10(49):42146-42154. PubMed ID: 30507136 [TBL] [Abstract][Full Text] [Related]
11. What are the Complications of Three-dimensionally Printed, Custom-made, Integrative Hemipelvic Endoprostheses in Patients with Primary Malignancies Involving the Acetabulum, and What is the Function of These Patients? Wang J; Min L; Lu M; Zhang Y; Wang Y; Luo Y; Zhou Y; Duan H; Tu C Clin Orthop Relat Res; 2020 Nov; 478(11):2487-2501. PubMed ID: 32420722 [TBL] [Abstract][Full Text] [Related]
12. Optimize the pore size-pore distribution-pore geometry-porosity of 3D-printed porous tantalum to obtain optimal critical bone defect repair capability. Wang X; Zhang D; Peng H; Yang J; Li Y; Xu J Biomater Adv; 2023 Nov; 154():213638. PubMed ID: 37812984 [TBL] [Abstract][Full Text] [Related]
13. Applying 3D-printed prostheses to reconstruct critical-sized bone defects of tibial diaphysis (> 10 cm) caused by osteomyelitis and aseptic non-union. Liu B; Wang L; Li X; Chen Z; Hou G; Zhou F; Wang C; Tian Y J Orthop Surg Res; 2024 Jul; 19(1):418. PubMed ID: 39033286 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of a lattice structure with periodic open pores through three-dimensional printing for bone ingrowth. Park JW; Park H; Kim JH; Kim HM; Yoo CH; Kang HG Sci Rep; 2022 Oct; 12(1):17223. PubMed ID: 36241776 [TBL] [Abstract][Full Text] [Related]
15. Improved osseointegration with rhBMP-2 intraoperatively loaded in a specifically designed 3D-printed porous Ti6Al4V vertebral implant. Zhang T; Wei Q; Fan D; Liu X; Li W; Song C; Tian Y; Cai H; Zheng Y; Liu Z Biomater Sci; 2020 Mar; 8(5):1279-1289. PubMed ID: 31867583 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional printed custom-made modular talus prosthesis in patients with talus malignant tumor resection. He X; Lu M; Zou C; Li Z; Gong T; Kenmegne GR; Wang Y; Luo Y; Zhou Y; Min L; Tu C J Orthop Surg Res; 2024 May; 19(1):273. PubMed ID: 38698477 [TBL] [Abstract][Full Text] [Related]
17. Tailored Surface Treatment of 3D Printed Porous Ti6Al4V by Microarc Oxidation for Enhanced Osseointegration via Optimized Bone In-Growth Patterns and Interlocked Bone/Implant Interface. Xiu P; Jia Z; Lv J; Yin C; Cheng Y; Zhang K; Song C; Leng H; Zheng Y; Cai H; Liu Z ACS Appl Mater Interfaces; 2016 Jul; 8(28):17964-75. PubMed ID: 27341499 [TBL] [Abstract][Full Text] [Related]
18. Effects of immediately static loading on osteointegration and osteogenesis around 3D-printed porous implant: A histological and biomechanical study. Yu T; Gao H; Liu T; Huang Y; Wang C Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110406. PubMed ID: 31924051 [TBL] [Abstract][Full Text] [Related]
19. Outcomes of Surgical Reconstruction Using Custom 3D-Printed Porous Titanium Implants for Critical-Sized Bone Defects of the Foot and Ankle. Abar B; Kwon N; Allen NB; Lau T; Johnson LG; Gall K; Adams SB Foot Ankle Int; 2022 Jun; 43(6):750-761. PubMed ID: 35209733 [TBL] [Abstract][Full Text] [Related]
20. Partially Melted Ti6Al4V Particles Increase Bacterial Adhesion and Inhibit Osteogenic Activity on 3D-printed Implants: An In Vitro Study. Xie K; Guo Y; Zhao S; Wang L; Wu J; Tan J; Yang Y; Wu W; Jiang W; Hao Y Clin Orthop Relat Res; 2019 Dec; 477(12):2772-2782. PubMed ID: 31764350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]