These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38297602)

  • 1. Mode localization in plasmonic optomechanical resonators for ultrasensitive infrared sensing.
    Hao Y; Yu X; Lang T; Li F
    Opt Express; 2024 Jan; 32(3):3922-3932. PubMed ID: 38297602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape memory polymer resonators as highly sensitive uncooled infrared detectors.
    Adiyan U; Larsen T; Zárate JJ; Villanueva LG; Shea H
    Nat Commun; 2019 Oct; 10(1):4518. PubMed ID: 31586068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing.
    Liu S; Xiao H; Chen Y; Chen P; Yan W; Lin Q; Liu B; Xu X; Wang Y; Weng X; Liu L; Qu J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled-mode theory for plasmonic resonators integrated with silicon waveguides towards mid-infrared spectroscopic sensing.
    Chen C; Oh SH; Li M
    Opt Express; 2020 Jan; 28(2):2020-2036. PubMed ID: 32121901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical mode localization sensing based on fiber-coupled ring resonators.
    Wang S; Pi H; Feng Y; Yan J
    Opt Express; 2023 Jun; 31(13):21834-21844. PubMed ID: 37381271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid-Infrared Gas Sensing Based on Electromagnetically Induced Transparency in Coupled Plasmonic Resonators.
    Shafaay S; Mohamed S; Swillam M
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomechanical torsional resonators for frequency-shift infrared thermal sensing.
    Zhang XC; Myers EB; Sader JE; Roukes ML
    Nano Lett; 2013 Apr; 13(4):1528-34. PubMed ID: 23458733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Optical and Mechanical Sensing Based on Optomechanical Resonators.
    Sentre-Arribas E; Aparicio-Millán A; Lemaître A; Favero I; Tamayo J; Calleja M; Gil-Santos E
    ACS Sens; 2024 Jan; 9(1):371-378. PubMed ID: 38156765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact ring resonators of silicon nanorods for strong optomechanical interaction.
    Wang F; Yuan J; Yang S; Potapov AA; Zhang X; Liang Z; Feng T
    Nanoscale; 2023 Mar; 15(10):4982-4990. PubMed ID: 36786450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive and Multifunction Plasmonic Temperature Sensor with Ethanol-Sealed Asymmetric Ellipse Resonators.
    Zhu J; Lou J
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30347731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-Free Near-Infrared Plasmonic Sensing Technique for DNA Detection at Ultralow Concentrations.
    Chen S; Liu C; Liu Y; Liu Q; Lu M; Bi S; Jing Z; Yu Q; Peng W
    Adv Sci (Weinh); 2020 Dec; 7(23):2000763. PubMed ID: 33304743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic actuation of silicon optomechanical resonators.
    Sridaran S; Bhave SA
    Opt Express; 2011 May; 19(10):9020-6. PubMed ID: 21643155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optomechanical dissipative solitons.
    Zhang J; Peng B; Kim S; Monifi F; Jiang X; Li Y; Yu P; Liu L; Liu YX; Alù A; Yang L
    Nature; 2021 Dec; 600(7887):75-80. PubMed ID: 34853455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection Wavelength Control of Uncooled Infrared Sensors Using Two-Dimensional Lattice Plasmonic Absorbers.
    Takagawa Y; Ogawa S; Kimata M
    Sensors (Basel); 2015 Jun; 15(6):13660-9. PubMed ID: 26067198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optomechanical nonlinearity enhanced optical sensors.
    Fan J; Huang C; Zhu L
    Opt Express; 2015 Feb; 23(3):2973-81. PubMed ID: 25836157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Sensitive Hydrogen Sensor Based on an Optical Driven Nanofilm Resonator.
    Luo J; Liu S; Chen P; Chen Y; Zhong J; Wang Y
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29357-29365. PubMed ID: 35704433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultracompact optical fiber acoustic sensors based on a fiber-top spirally-suspended optomechanical microresonator.
    Yao M; Zhang Y; Ouyang X; Ping Zhang A; Tam HY; Wai PKA
    Opt Lett; 2020 Jul; 45(13):3516-3519. PubMed ID: 32630887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A decouple-decomposition noise analysis model for closed-loop mode-localized tilt sensors.
    Wang K; Xiong X; Wang Z; Ma L; Wang B; Yang W; Bie X; Li Z; Zou X
    Microsyst Nanoeng; 2023; 9():157. PubMed ID: 38130440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Terahertz Detectors Using Microelectromechanical System Resonators.
    Li C; Zhang Y; Hirakawa K
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Ultrasensitive Silicon Photonic Ion Sensor Enabled by 2D Plasmonic Molybdenum Oxide.
    Ren G; Zhang BY; Yao Q; Zavabeti A; Huertas CS; Brkljača R; Khan MW; Nili H; Datta RS; Khan H; Jannat A; Walia S; Haque F; O'Dell LA; Wang Y; Zhu L; Mitchell A; Ou JZ
    Small; 2019 Mar; 15(9):e1805251. PubMed ID: 30677221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.