BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38297617)

  • 1. Antiresonant fiber-enhanced Raman spectroscopy gas sensing with 1 ppm sensitivity.
    Yang M; Liu Z; Xiong L; Nie Q; Wang Y; Gao S; Cheng M; Yang D; Pei S; Guo D
    Opt Express; 2024 Jan; 32(3):4093-4101. PubMed ID: 38297617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Fiber-Enhanced Raman Gas Sensing Based on Raman Chemical Imaging.
    Yan D; Popp J; Frosch T
    Anal Chem; 2017 Nov; 89(22):12269-12275. PubMed ID: 29087686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nodeless hollow-core fiber for the visible spectral range.
    Gao SF; Wang YY; Liu XL; Hong C; Gu S; Wang P
    Opt Lett; 2017 Jan; 42(1):61-64. PubMed ID: 28059178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fiber-enhanced Raman spectroscopy for highly sensitive H
    Wang J; Chen W; Wang P; Zhang Z; Wan F; Zhou F; Song R; Wang Y; Gao S
    Opt Express; 2021 Sep; 29(20):32296-32311. PubMed ID: 34615304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of an anti-resonant hollow-core fiber with a multimode Yb-doped fiber for high power near-diffraction-limited laser operation.
    Li H; Goel C; Zang J; Raghuraman S; Chen S; Abu Hassan MR; Chang W; Yoo S
    Opt Express; 2022 Feb; 30(5):7928-7937. PubMed ID: 35299545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of fuel gases with fiber-enhanced Raman spectroscopy.
    Sieburg A; Knebl A; Jacob JM; Frosch T
    Anal Bioanal Chem; 2019 Nov; 411(28):7399-7408. PubMed ID: 31529140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber-Enhanced Raman Gas Spectroscopy for
    Knebl A; Domes R; Yan D; Popp J; Trumbore S; Frosch T
    Anal Chem; 2019 Jun; 91(12):7562-7569. PubMed ID: 31050402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Gas Analysis Method Based on Single-Beam Excitation Stimulated Raman Scattering in Hollow Core Photonic Crystal Fiber Enhanced Raman Spectroscopy.
    Shirmohammad M; Short MA; Zeng H
    Bioengineering (Basel); 2023 Oct; 10(10):. PubMed ID: 37892891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivery of nanosecond laser pulses by multi-mode anti-resonant hollow core fiber at 1 µm wavelength.
    Zhao M; Yu F; Wu D; Zhu X; Chen S; Wang M; Liu M; Zhao K; Zhai R; Jia Z; Knight J
    Opt Express; 2024 May; 32(10):17229-17238. PubMed ID: 38858912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing.
    Hou M; Zhu F; Wang Y; Wang Y; Liao C; Liu S; Lu P
    Opt Express; 2016 Nov; 24(24):27890-27898. PubMed ID: 27906357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-Division-Multiplexed Multicomponent Gas Sensing with Photothermal Spectroscopy and a Single NIR/MIR Fiber-Optic Gas Cell.
    Chen F; Jiang S; Ho HL; Gao S; Wang Y; Jin W
    Anal Chem; 2022 Oct; 94(39):13473-13480. PubMed ID: 36129189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiresonant Hollow-Core Fiber-Based Dual Gas Sensor for Detection of Methane and Carbon Dioxide in the Near- and Mid-Infrared Regions.
    Jaworski P; Kozioł P; Krzempek K; Wu D; Yu F; Bojęś P; Dudzik G; Liao M; Abramski K; Knight J
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32650459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ background-free Raman probe using double-cladding anti-resonant hollow-core fibers.
    Luan S; Chen S; Zhu X; Wu D; Yu F; Hu J; Yu C; Hu L
    Biomed Opt Express; 2024 Mar; 15(3):1709-1718. PubMed ID: 38495691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collision Enhanced Raman Scattering (CERS): An Ultra-High Efficient Raman Enhancement Technique for Hollow Core Photonic Crystal Fiber Based Raman Spectroscopy Gas Analyzer.
    Shirmohammad M; Short MA; Zeng H
    Biosensors (Basel); 2023 Nov; 13(11):. PubMed ID: 37998154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-Based Trace Gas Detection inside Hollow-Core Fibers: A Review.
    Nikodem M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32916799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterodyne photothermal spectroscopy of methane near 1651 nm inside hollow-core fiber using a bismuth-doped fiber amplifier.
    Gomolka G; Krajewska M; Khegai AM; Alyshev SV; Lobanov AS; Firstov SV; Pysz D; Stepniewski G; Buczynski R; Klimczak M; Nikodem M
    Appl Opt; 2021 May; 60(15):C84-C91. PubMed ID: 34143110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible single-mode delivery of a high-power 2  μm pulsed laser using an antiresonant hollow-core fiber.
    Lee E; Luo J; Sun B; Ramalingam V; Zhang Y; Wang Q; Yu F; Yu X
    Opt Lett; 2018 Jun; 43(12):2732-2735. PubMed ID: 29905675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath.
    Hanf S; Bögözi T; Keiner R; Frosch T; Popp J
    Anal Chem; 2015 Jan; 87(2):982-8. PubMed ID: 25545503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen and C2-C6 Alkane Sensing in Complex Fuel Gas Mixtures with Fiber-Enhanced Raman Spectroscopy.
    Knebl A; Domes C; Domes R; Wolf S; Popp J; Frosch T
    Anal Chem; 2021 Aug; 93(30):10546-10552. PubMed ID: 34297525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher-Order Mode Suppression in Antiresonant Nodeless Hollow-Core Fibers.
    Ge A; Meng F; Li Y; Liu B; Hu M
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30769944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.