These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38297617)
1. Antiresonant fiber-enhanced Raman spectroscopy gas sensing with 1 ppm sensitivity. Yang M; Liu Z; Xiong L; Nie Q; Wang Y; Gao S; Cheng M; Yang D; Pei S; Guo D Opt Express; 2024 Jan; 32(3):4093-4101. PubMed ID: 38297617 [TBL] [Abstract][Full Text] [Related]
2. Analysis of Fiber-Enhanced Raman Gas Sensing Based on Raman Chemical Imaging. Yan D; Popp J; Frosch T Anal Chem; 2017 Nov; 89(22):12269-12275. PubMed ID: 29087686 [TBL] [Abstract][Full Text] [Related]
3. Nodeless hollow-core fiber for the visible spectral range. Gao SF; Wang YY; Liu XL; Hong C; Gu S; Wang P Opt Lett; 2017 Jan; 42(1):61-64. PubMed ID: 28059178 [TBL] [Abstract][Full Text] [Related]
4. Fiber-enhanced Raman spectroscopy for highly sensitive H Wang J; Chen W; Wang P; Zhang Z; Wan F; Zhou F; Song R; Wang Y; Gao S Opt Express; 2021 Sep; 29(20):32296-32311. PubMed ID: 34615304 [TBL] [Abstract][Full Text] [Related]
5. Integration of an anti-resonant hollow-core fiber with a multimode Yb-doped fiber for high power near-diffraction-limited laser operation. Li H; Goel C; Zang J; Raghuraman S; Chen S; Abu Hassan MR; Chang W; Yoo S Opt Express; 2022 Feb; 30(5):7928-7937. PubMed ID: 35299545 [TBL] [Abstract][Full Text] [Related]
6. Characterization of fuel gases with fiber-enhanced Raman spectroscopy. Sieburg A; Knebl A; Jacob JM; Frosch T Anal Bioanal Chem; 2019 Nov; 411(28):7399-7408. PubMed ID: 31529140 [TBL] [Abstract][Full Text] [Related]
7. Fiber-Enhanced Raman Gas Spectroscopy for Knebl A; Domes R; Yan D; Popp J; Trumbore S; Frosch T Anal Chem; 2019 Jun; 91(12):7562-7569. PubMed ID: 31050402 [TBL] [Abstract][Full Text] [Related]
8. A New Gas Analysis Method Based on Single-Beam Excitation Stimulated Raman Scattering in Hollow Core Photonic Crystal Fiber Enhanced Raman Spectroscopy. Shirmohammad M; Short MA; Zeng H Bioengineering (Basel); 2023 Oct; 10(10):. PubMed ID: 37892891 [TBL] [Abstract][Full Text] [Related]
9. Delivery of nanosecond laser pulses by multi-mode anti-resonant hollow core fiber at 1 µm wavelength. Zhao M; Yu F; Wu D; Zhu X; Chen S; Wang M; Liu M; Zhao K; Zhai R; Jia Z; Knight J Opt Express; 2024 May; 32(10):17229-17238. PubMed ID: 38858912 [TBL] [Abstract][Full Text] [Related]
10. Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing. Hou M; Zhu F; Wang Y; Wang Y; Liao C; Liu S; Lu P Opt Express; 2016 Nov; 24(24):27890-27898. PubMed ID: 27906357 [TBL] [Abstract][Full Text] [Related]
11. Frequency-Division-Multiplexed Multicomponent Gas Sensing with Photothermal Spectroscopy and a Single NIR/MIR Fiber-Optic Gas Cell. Chen F; Jiang S; Ho HL; Gao S; Wang Y; Jin W Anal Chem; 2022 Oct; 94(39):13473-13480. PubMed ID: 36129189 [TBL] [Abstract][Full Text] [Related]
12. Antiresonant Hollow-Core Fiber-Based Dual Gas Sensor for Detection of Methane and Carbon Dioxide in the Near- and Mid-Infrared Regions. Jaworski P; Kozioł P; Krzempek K; Wu D; Yu F; Bojęś P; Dudzik G; Liao M; Abramski K; Knight J Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32650459 [TBL] [Abstract][Full Text] [Related]
13. In-situ background-free Raman probe using double-cladding anti-resonant hollow-core fibers. Luan S; Chen S; Zhu X; Wu D; Yu F; Hu J; Yu C; Hu L Biomed Opt Express; 2024 Mar; 15(3):1709-1718. PubMed ID: 38495691 [TBL] [Abstract][Full Text] [Related]
14. Collision Enhanced Raman Scattering (CERS): An Ultra-High Efficient Raman Enhancement Technique for Hollow Core Photonic Crystal Fiber Based Raman Spectroscopy Gas Analyzer. Shirmohammad M; Short MA; Zeng H Biosensors (Basel); 2023 Nov; 13(11):. PubMed ID: 37998154 [TBL] [Abstract][Full Text] [Related]
15. Laser-Based Trace Gas Detection inside Hollow-Core Fibers: A Review. Nikodem M Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32916799 [TBL] [Abstract][Full Text] [Related]
16. Heterodyne photothermal spectroscopy of methane near 1651 nm inside hollow-core fiber using a bismuth-doped fiber amplifier. Gomolka G; Krajewska M; Khegai AM; Alyshev SV; Lobanov AS; Firstov SV; Pysz D; Stepniewski G; Buczynski R; Klimczak M; Nikodem M Appl Opt; 2021 May; 60(15):C84-C91. PubMed ID: 34143110 [TBL] [Abstract][Full Text] [Related]
17. Flexible single-mode delivery of a high-power 2 μm pulsed laser using an antiresonant hollow-core fiber. Lee E; Luo J; Sun B; Ramalingam V; Zhang Y; Wang Q; Yu F; Yu X Opt Lett; 2018 Jun; 43(12):2732-2735. PubMed ID: 29905675 [TBL] [Abstract][Full Text] [Related]
18. Dynamic Detection of Decomposition Gases in Eco-Friendly C Kong W; Wan F; Lei Y; Wang C; Sun H; Wang R; Chen W Anal Chem; 2024 Sep; ():. PubMed ID: 39263740 [TBL] [Abstract][Full Text] [Related]
19. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath. Hanf S; Bögözi T; Keiner R; Frosch T; Popp J Anal Chem; 2015 Jan; 87(2):982-8. PubMed ID: 25545503 [TBL] [Abstract][Full Text] [Related]
20. Hydrogen and C2-C6 Alkane Sensing in Complex Fuel Gas Mixtures with Fiber-Enhanced Raman Spectroscopy. Knebl A; Domes C; Domes R; Wolf S; Popp J; Frosch T Anal Chem; 2021 Aug; 93(30):10546-10552. PubMed ID: 34297525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]