These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38297747)

  • 1. AlInAsSb Geiger-mode SWIR and eSWIR SPADs with high avalanche probability.
    Herrera DJ; Dadey AA; March SD; Bank SR; Campbell JC
    Opt Express; 2024 Jan; 32(2):2106-2113. PubMed ID: 38297747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Al
    Jones AH; Yuan Y; Ren M; Maddox SJ; Bank SR; Campbell JC
    Opt Express; 2017 Oct; 25(20):24340-24345. PubMed ID: 29041378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual anode single-photon avalanche diode for high-speed and low-noise Geiger-mode operation.
    Park C; Cho SB; Park CY; Baek S; Han SK
    Opt Express; 2019 Jun; 27(13):18201-18209. PubMed ID: 31252767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. InGaAs-GaAs Nanowire Avalanche Photodiodes Toward Single-Photon Detection in Free-Running Mode.
    Farrell AC; Meng X; Ren D; Kim H; Senanayake P; Hsieh NY; Rong Z; Chang TY; Azizur-Rahman KM; Huffaker DL
    Nano Lett; 2019 Jan; 19(1):582-590. PubMed ID: 30517782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical Analysis of InGaAs/InAlAs Single-Photon Avalanche Photodiodes.
    Cao S; Zhao Y; Feng S; Zuo Y; Zhang L; Cheng B; Li C
    Nanoscale Res Lett; 2019 Jan; 14(1):3. PubMed ID: 30607636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on III-V compound semiconductor short wave infrared avalanche photodiodes.
    Liang Y; Perumalveeramalai C; Lin G; Su X; Zhang X; Feng S; Xu Y; Li C
    Nanotechnology; 2022 Feb; ():. PubMed ID: 35144248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and Analysis of Capacitive Relaxation Quenching in a Single Photon Avalanche Diode (SPAD) Applied to a CMOS Image Sensor.
    Inoue A; Okino T; Koyama S; Hirose Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on III-V compound semiconductor short wave infrared avalanche photodiodes.
    Liang Y; Perumal Veeramalai C; Lin G; Su X; Zhang X; Feng S; Xu Y; Li C
    Nanotechnology; 2022 Mar; 33(22):. PubMed ID: 35147516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes.
    Buchner A; Hadrath S; Burkard R; Kolb FM; Ruskowski J; Ligges M; Grabmaier A
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling for Single-Photon Avalanche Diodes: State-of-the-Art and Research Challenges.
    Qian X; Jiang W; Elsharabasy A; Deen MJ
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable-load quenching circuit for single-photon avalanche diodes.
    Tisa S; Guerrieri F; Zappa F
    Opt Express; 2008 Feb; 16(3):2232-44. PubMed ID: 18542303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of HgCdTe (100) and HgCdTe (111)B Heterostructures Grown by MOCVD and Their Potential Application to APDs Operating in the IR Range up to 8 µm.
    Kopytko M; Sobieski J; Gawron W; Martyniuk P
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Avalanche photodiodes and quenching circuits for single-photon detection.
    Cova S; Ghioni M; Lacaita A; Samori C; Zappa F
    Appl Opt; 1996 Apr; 35(12):1956-76. PubMed ID: 21085320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging.
    Resetar T; De Munck K; Haspeslagh L; Rosmeulen M; Süss A; Puers R; Van Hoof C
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27537882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photon counting techniques with silicon avalanche photodiodes.
    Dautet H; Deschamps P; Dion B; Macgregor AD; Macsween D; McIntyre RJ; Trottier C; Webb PP
    Appl Opt; 1993 Jul; 32(21):3894-900. PubMed ID: 20830022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design considerations of high-performance InGaAs/InP single-photon avalanche diodes for quantum key distribution.
    Ma J; Bai B; Wang LJ; Tong CZ; Jin G; Zhang J; Pan JW
    Appl Opt; 2016 Sep; 55(27):7497-502. PubMed ID: 27661574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect characterization of AlInAsSb digital alloy avalanche photodetectors with low frequency noise spectroscopy.
    Zhang N; Jones AH; Deng Z; Chen B
    Opt Express; 2020 Apr; 28(8):11682-11691. PubMed ID: 32403674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avalanche Transients of Thick 0.35 µm CMOS Single-Photon Avalanche Diodes.
    Goll B; Steindl B; Zimmermann H
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32961756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distortion losses of high-speed single-photon avalanche diode optical receivers approaching quantum sensitivity.
    Kosman J; Moore K; Haas H; Henderson RK
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190194. PubMed ID: 32114924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current-Assisted SPAD with Improved p-n Junction and Enhanced NIR Performance.
    Jegannathan G; Van den Dries T; Kuijk M
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.