These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38297792)
1. Workflow for modeling of generalized mid-spatial frequency errors in optical systems. DeMars LA; Bauer A; Stone BD; Rolland JP; Suleski TJ Opt Express; 2024 Jan; 32(2):2688-2703. PubMed ID: 38297792 [TBL] [Abstract][Full Text] [Related]
2. Use of pupil-difference moments for predicting optical performance impacts of generalized mid-spatial frequency surface errors. DeMars LA; Suleski TJ Opt Express; 2023 Oct; 31(22):36337-36349. PubMed ID: 38017788 [TBL] [Abstract][Full Text] [Related]
3. Validity of the perturbation model for the propagation of MSF structure in 2D. Liang K; Forbes GW; Alonso MA Opt Express; 2019 Feb; 27(3):3390-3408. PubMed ID: 30732360 [TBL] [Abstract][Full Text] [Related]
4. Simple methods for estimating the performance and specification of optical components with anisotropic mid-spatial frequency surface errors. Aryan H; Boreman GD; Suleski TJ Opt Express; 2019 Oct; 27(22):32709-32721. PubMed ID: 31684478 [TBL] [Abstract][Full Text] [Related]
5. Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces. He Z; Hai K; Li K; Yu J; Wu L; Zhang L; Su X; Cai L; Huang W; Hang W Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793227 [TBL] [Abstract][Full Text] [Related]
6. Effects of structured mid-spatial frequency surface errors on image performance. Tamkin JM; Milster TD Appl Opt; 2010 Nov; 49(33):6522-36. PubMed ID: 21102679 [TBL] [Abstract][Full Text] [Related]
7. Desensitization to mid-spatial-frequency surface errors. Yabe A Opt Express; 2019 Oct; 27(21):29985-29991. PubMed ID: 31684253 [TBL] [Abstract][Full Text] [Related]
8. Validity of the perturbation model for the propagation of MSF structures in 3D. Liang K; Forbes GW; Alonso MA Opt Express; 2020 Jul; 28(14):20277-20295. PubMed ID: 32680091 [TBL] [Abstract][Full Text] [Related]
9. Modeling and analysis of the mid-spatial- frequency error characteristics and generation mechanism in sub-aperture optical polishing. Wan S; Wei C; Hong Z; Shao J Opt Express; 2020 Mar; 28(6):8959-8973. PubMed ID: 32225511 [TBL] [Abstract][Full Text] [Related]
10. Wigner function-based modeling and propagation of partially coherent light in optical systems with scattering surfaces. Lu X; Gross H Opt Express; 2021 May; 29(10):14985-15000. PubMed ID: 33985208 [TBL] [Abstract][Full Text] [Related]
11. Pupil-difference moments for estimating relative modulation from general mid-spatial frequency surface errors. DeMars LA; Suleski TJ Opt Lett; 2023 May; 48(9):2492-2495. PubMed ID: 37126307 [TBL] [Abstract][Full Text] [Related]
12. Topography stitching in the spatial frequency domain for the representation of mid-spatial frequency errors. Sekman Y; Trost M; Lammers T; Hartung J; Risse S; Schröder S Appl Opt; 2022 Oct; 61(28):8286-8301. PubMed ID: 36256141 [TBL] [Abstract][Full Text] [Related]
13. Metasurface Spiral Focusing Generators with Tunable Orbital Angular Momentum Based on Slab Silicon Nitride Waveguide and Vanadium Dioxide (VO Chen L; Zhao L; Hao Y; Liu W; Wu Y; Wei Z; Xu N; Qin S; Yang X; Liu H Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32957606 [TBL] [Abstract][Full Text] [Related]
14. Modeling and in-depth analysis of the mid-spatial-frequency error influenced by actual contact pressure distribution in sub-aperture polishing. Zhang L; Wan S; Li H; Guo H; Wei C; Zhang D; Shao J Opt Express; 2023 Apr; 31(9):14414-14431. PubMed ID: 37157306 [TBL] [Abstract][Full Text] [Related]
15. Suppression of mid-spatial-frequency waviness by a universal random tree-shaped path in robotic bonnet polishing. Wang C; Han Y; Zhang H; Liu C; Jiang L; Qian L Opt Express; 2022 Aug; 30(16):29216-29233. PubMed ID: 36299101 [TBL] [Abstract][Full Text] [Related]
16. Effects on the OTF of MSF structures with random variations. Liang K; Alonso MA Opt Express; 2019 Nov; 27(24):34665-34680. PubMed ID: 31878653 [TBL] [Abstract][Full Text] [Related]
17. Restraint of the mid-spatial frequency error on optical surfaces by multi-jet polishing. Zhang Z; Cheung CF; Wang C; Ho LT; Guo J Opt Express; 2022 Dec; 30(26):46307-46323. PubMed ID: 36558588 [TBL] [Abstract][Full Text] [Related]
18. Predictive models for the Strehl ratio of diamond-machined optics. Aryan H; Liang K; Alonso MA; Suleski TJ Appl Opt; 2019 Apr; 58(12):3272-3276. PubMed ID: 31044807 [TBL] [Abstract][Full Text] [Related]
19. Understanding the effects of groove structures on the MTF. Liang K; Alonso MA Opt Express; 2017 Aug; 25(16):18827-18841. PubMed ID: 29041075 [TBL] [Abstract][Full Text] [Related]
20. Sparse bi-step raster path for suppressing the mid-spatial-frequency error by fluid jet polishing. Wan K; Wan S; Jiang C; Wei C; Shao J Opt Express; 2022 Feb; 30(5):6603-6616. PubMed ID: 35299441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]