BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38297883)

  • 1. Inhibition of PTPN3 Expressed in Activated Lymphocytes Enhances the Antitumor Effects of Anti-PD-1 Therapy in Head and Neck Cancer, Especially in Hypoxic Environments.
    Masuda S; Onishi H; Iwamoto N; Imaizumi A; Koga S; Nagao S; Sakanashi K; Itoyama S; Fujimura A; Komune N; Kogo R; Umebayashi M; Morisaki T; Nakagawa T
    J Immunother; 2024 Apr; 47(3):89-97. PubMed ID: 38297883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NFκB and TGFβ contribute to the expression of PTPN3 in activated human lymphocytes.
    Nakayama K; Onishi H; Fujimura A; Imaizumi A; Kawamoto M; Oyama Y; Ichimiya S; Koga S; Fujimoto Y; Nakashima K; Nakamura M
    Cell Immunol; 2020 Dec; 358():104237. PubMed ID: 33137650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PTPN3 expressed in activated T lymphocytes is a candidate for a non-antibody-type immune checkpoint inhibitor.
    Fujimura A; Nakayama K; Imaizumi A; Kawamoto M; Oyama Y; Ichimiya S; Umebayashi M; Koya N; Morisaki T; Nakagawa T; Onishi H
    Cancer Immunol Immunother; 2019 Oct; 68(10):1649-1660. PubMed ID: 31562536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTPN3 inhibition contributes to the activation of the dendritic cell function to be a promising new immunotherapy target.
    Iwamoto N; Onishi H; Masuda S; Imaizumi A; Sakanashi K; Morisaki S; Nagao S; Koga S; Ozono K; Umebayashi M; Morisaki T; Nakamura M
    J Cancer Res Clin Oncol; 2023 Nov; 149(16):14619-14630. PubMed ID: 37584709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and verification of PTPN3 as a novel biomarker in predicting cancer prognosis, immunity, and immunotherapeutic efficacy.
    Zhou Z; Lin Z; Wang M; Wang L; Ji Y; Yang J; Yang Y; Zhu G; Liu T
    Eur J Med Res; 2024 Jan; 29(1):12. PubMed ID: 38173048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PTPN3 is a potential target for a new cancer immunotherapy that has a dual effect of T cell activation and direct cancer inhibition in lung neuroendocrine tumor.
    Koga S; Onishi H; Masuda S; Fujimura A; Ichimiya S; Nakayama K; Imaizumi A; Nishiyama K; Kojima M; Miyoshi K; Nakamura K; Umebayashi M; Morisaki T; Nakamura M
    Transl Oncol; 2021 Sep; 14(9):101152. PubMed ID: 34134073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA-574-5p in gastric cancer cells promotes angiogenesis by targeting protein tyrosine phosphatase non-receptor type 3 (PTPN3).
    Zhang S; Zhang R; Xu R; Shang J; He H; Yang Q
    Gene; 2020 Apr; 733():144383. PubMed ID: 31972307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PTPN3 Inhibits the Growth and Metastasis of Clear Cell Renal Cell Carcinoma via Inhibition of PI3K/AKT Signaling.
    Peng XS; Yang JP; Qiang YY; Sun R; Cao Y; Zheng LS; Peng LX; Lang YH; Mei Y; Li CZ; Meng DF; Liu ZJ; Wang MD; Zhou FJ; Huang BJ; Qian CN
    Mol Cancer Res; 2020 Jun; 18(6):903-912. PubMed ID: 32169891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment.
    Li J; Jie HB; Lei Y; Gildener-Leapman N; Trivedi S; Green T; Kane LP; Ferris RL
    Cancer Res; 2015 Feb; 75(3):508-518. PubMed ID: 25480946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune Checkpoint Expression on Immune Cells of HNSCC Patients and Modulation by Chemo- and Immunotherapy.
    Puntigam LK; Jeske SS; Götz M; Greiner J; Laban S; Theodoraki MN; Doescher J; Weissinger SE; Brunner C; Hoffmann TK; Schuler PJ
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of hepatitis B viral gene expression by protein-tyrosine phosphatase PTPN3.
    Hsu EC; Lin YC; Hung CS; Huang CJ; Lee MY; Yang SC; Ting LP
    J Biomed Sci; 2007 Nov; 14(6):731-44. PubMed ID: 17588219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation.
    Chen X; Gao A; Zhang F; Yang Z; Wang S; Fang Y; Li J; Wang J; Shi W; Wang L; Zheng Y; Sun Y
    Theranostics; 2021; 11(7):3392-3416. PubMed ID: 33537094
    [No Abstract]   [Full Text] [Related]  

  • 13. Immune-checkpoint molecules on regulatory T-cells as a potential therapeutic target in head and neck squamous cell cancers.
    Suzuki S; Ogawa T; Sano R; Takahara T; Inukai D; Akira S; Tsuchida H; Yoshikawa K; Ueda R; Tsuzuki T
    Cancer Sci; 2020 Jun; 111(6):1943-1957. PubMed ID: 32304268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune-Checkpoint Blockade Opposes CD8
    Pfannenstiel LW; Diaz-Montero CM; Tian YF; Scharpf J; Ko JS; Gastman BR
    Cancer Immunol Res; 2019 Mar; 7(3):510-525. PubMed ID: 30728151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PTPN3 Could Βe a Therapeutic Target of Pancreatic Cancer.
    Onishi H; Iwamoto N; Sakanashi K; Koga S; Oyama Y; Yanai K; Nakamura K; Nagai S; Fujimura A; Nakayama K; Ozono K; Yamasaki A
    Anticancer Res; 2022 Jun; 42(6):2869-2874. PubMed ID: 35641270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MEK1/2 inhibition transiently alters the tumor immune microenvironment to enhance immunotherapy efficacy against head and neck cancer.
    Prasad M; Zorea J; Jagadeeshan S; Shnerb AB; Mathukkada S; Bouaoud J; Michon L; Novoplansky O; Badarni M; Cohen L; Yegodayev KM; Tzadok S; Rotblat B; Brezina L; Mock A; Karabajakian A; Fayette J; Cohen I; Cooks T; Allon I; Dimitstein O; Joshua B; Kong D; Voronov E; Scaltriti M; Carmi Y; Conde-Lopez C; Hess J; Kurth I; Morris LGT; Saintigny P; Elkabets M
    J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35292516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice.
    Chen Y; Ramjiawan RR; Reiberger T; Ng MR; Hato T; Huang Y; Ochiai H; Kitahara S; Unan EC; Reddy TP; Fan C; Huang P; Bardeesy N; Zhu AX; Jain RK; Duda DG
    Hepatology; 2015 May; 61(5):1591-602. PubMed ID: 25529917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.
    Zhou G; Sprengers D; Boor PPC; Doukas M; Schutz H; Mancham S; Pedroza-Gonzalez A; Polak WG; de Jonge J; Gaspersz M; Dong H; Thielemans K; Pan Q; IJzermans JNM; Bruno MJ; Kwekkeboom J
    Gastroenterology; 2017 Oct; 153(4):1107-1119.e10. PubMed ID: 28648905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade.
    Bai X; Zhou Y; Yokota Y; Matsumoto Y; Zhai B; Maarouf N; Hayashi H; Carlson R; Zhang S; Sousa A; Sun B; Ghanbari H; Dong X; Wands JR
    J Exp Clin Cancer Res; 2022 Apr; 41(1):132. PubMed ID: 35392977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation.
    Li MY; Lai PL; Chou YT; Chi AP; Mi YZ; Khoo KH; Chang GD; Wu CW; Meng TC; Chen GC
    Oncogene; 2015 Jul; 34(29):3791-803. PubMed ID: 25263444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.