These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38297996)
1. Residue-Free and Recyclable Starch-Based Flocculants for Dye Wastewater Flocculation. Gao Z; Ju B; Tang B; Ma W; Niu W; Zhang S Langmuir; 2024 Feb; 40(6):3231-3240. PubMed ID: 38297996 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater. Du Q; Wei H; Li A; Yang H Sci Total Environ; 2017 Dec; 601-602():1628-1637. PubMed ID: 28609850 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of renewable pH-responsive starch-based flocculant on treating and recycling of highly saline textile effluents. Wang K; Ran T; Yu P; Chen L; Zhao J; Ahmad A; Ramzan N; Xu X; Xu Y; Shi Y Environ Res; 2021 Oct; 201():111489. PubMed ID: 34166665 [TBL] [Abstract][Full Text] [Related]
4. Flocculation performance of lignin-based flocculant during reactive blue dye removal: comparison with commercial flocculants. Guo K; Gao B; Li R; Wang W; Yue Q; Wang Y Environ Sci Pollut Res Int; 2018 Jan; 25(3):2083-2095. PubMed ID: 29199367 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of structural effects on the flocculation performance of a co-graft starch-based flocculant. Liu Z; Wei H; Li A; Yang H Water Res; 2017 Jul; 118():160-166. PubMed ID: 28431348 [TBL] [Abstract][Full Text] [Related]
6. Full biomass-based multifunctional flocculant from lignin and cationic starch. Sun D; Zeng J; Yang D; Qiu X; Liu W Int J Biol Macromol; 2023 Dec; 253(Pt 6):127287. PubMed ID: 37806418 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water. Wu H; Liu Z; Yang H; Li A Water Res; 2016 Jun; 96():126-35. PubMed ID: 27038383 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of starch-based flocculants for the flocculation of dissolved organic matter from textile dyeing secondary wastewater. Wu H; Liu Z; Li A; Yang H Chemosphere; 2017 May; 174():200-207. PubMed ID: 28167351 [TBL] [Abstract][Full Text] [Related]
9. Flocculation performance of papermaking sludge-based flocculants in different dye wastewater treatment: Comparison with commercial lignin and coagulants. Feng Q; Gao B; Yue Q; Guo K Chemosphere; 2021 Jan; 262():128416. PubMed ID: 33182118 [TBL] [Abstract][Full Text] [Related]
10. Comparison of two starch-based flocculants with polyacrylamide for the simultaneous removal of phosphorus and turbidity from simulated and actual wastewater samples in combination with FeCl Hu P; Ren J; Hu X; Yang H Int J Biol Macromol; 2021 Jan; 167():223-232. PubMed ID: 33259840 [TBL] [Abstract][Full Text] [Related]
11. Development and evaluation of amine-functionalized β-cyclodextrin grafted starch as a natural flocculant for turbidity removal in water treatment. Salehin M; Khoshbouy R; Fatehifar E Int J Biol Macromol; 2024 Sep; 280(Pt 4):136118. PubMed ID: 39343283 [TBL] [Abstract][Full Text] [Related]
12. Dual functionality of a graft starch flocculant: Flocculation and antibacterial performance. Huang M; Liu Z; Li A; Yang H J Environ Manage; 2017 Jul; 196():63-71. PubMed ID: 28284139 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of a novel dextran-based flocculant on treatment of dye wastewater: Effect of kaolin particles. Zhao C; Zheng H; Sun Y; Zhang S; Liang J; Liu Y; An Y Sci Total Environ; 2018 Nov; 640-641():243-254. PubMed ID: 29859440 [TBL] [Abstract][Full Text] [Related]
14. Heavy metal removal from aqueous solutions by chitosan-based magnetic composite flocculants. Xiao X; Yu Y; Sun Y; Zheng X; Chen A J Environ Sci (China); 2021 Oct; 108():22-32. PubMed ID: 34465434 [TBL] [Abstract][Full Text] [Related]
15. Optimization of Polyaluminum Chloride-Chitosan Flocculant for Treating Pig Biogas Slurry Using the Box⁻Behnken Response Surface Method. Li Y; Li L; Yasser Farouk R; Wang Y Int J Environ Res Public Health; 2019 Mar; 16(6):. PubMed ID: 30893920 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties. Wang JP; Yuan SJ; Wang Y; Yu HQ Water Res; 2013 May; 47(8):2643-8. PubMed ID: 23531592 [TBL] [Abstract][Full Text] [Related]
17. Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae. Morrissey KL; He C; Wong MH; Zhao X; Chapman RZ; Bender SL; Prevatt WD; Stoykovich MP Biotechnol Bioeng; 2015 Jan; 112(1):74-83. PubMed ID: 25060233 [TBL] [Abstract][Full Text] [Related]
18. Influence of organic and inorganic flocculants on the formation of PCDD/Fs during sewage sludge incineration. Lin X; Li X; Lu S; Wang F; Chen T; Yan J Environ Sci Pollut Res Int; 2015 Oct; 22(19):14629-36. PubMed ID: 25028327 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the structural factors for the flocculation performance of a co-graft cationic starch-based flocculant. Hu P; Xi Z; Li Y; Li A; Yang H Chemosphere; 2020 Feb; 240():124866. PubMed ID: 31546191 [TBL] [Abstract][Full Text] [Related]
20. High performance, cost-effective and ecofriendly flocculant synthesized by grafting carboxymethyl cellulose and alginate with itaconic acid. Zhang H; Guan G; Lou T; Wang X Int J Biol Macromol; 2023 Mar; 231():123305. PubMed ID: 36681020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]