These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38298112)

  • 1. Harnessing Catalytic RNA Circuits for Construction of Artificial Signaling Pathways in Mammalian Cells.
    Wu CQ; Wu RY; Zhang QL; Wang LL; Wang Y; Dai C; Zhang CX; Xu L
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202319309. PubMed ID: 38298112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building RNA-Mediated Artificial Signaling Pathways between Endogenous Genes.
    Wu RY; Wu CQ; Xie F; Xing X; Xu L
    Acc Chem Res; 2024 Jul; 57(13):1777-1789. PubMed ID: 38872074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishing artificial gene connections through RNA displacement-assembly-controlled CRISPR/Cas9 function.
    Wang WJ; Lin J; Wu CQ; Luo AL; Xing X; Xu L
    Nucleic Acids Res; 2023 Aug; 51(14):7691-7703. PubMed ID: 37395400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building Endogenous Gene Connections through RNA Self-Assembly Controlled CRISPR/Cas9 Function.
    Lin J; Wang WJ; Wang Y; Liu Y; Xu L
    J Am Chem Soc; 2021 Dec; 143(47):19834-19843. PubMed ID: 34788038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic RNA-based post-transcriptional expression control methods and genetic circuits.
    Pardi ML; Wu J; Kawasaki S; Saito H
    Adv Drug Deliv Rev; 2022 May; 184():114196. PubMed ID: 35288218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directing cellular information flow via CRISPR signal conductors.
    Liu Y; Zhan Y; Chen Z; He A; Li J; Wu H; Liu L; Zhuang C; Lin J; Guo X; Zhang Q; Huang W; Cai Z
    Nat Methods; 2016 Nov; 13(11):938-944. PubMed ID: 27595406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferring a synthetic gene circuit from yeast to mammalian cells.
    Nevozhay D; Zal T; Balázsi G
    Nat Commun; 2013; 4():1451. PubMed ID: 23385595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA interference and cancer: endogenous pathways and therapeutic approaches.
    Dykxhoorn DM; Chowdhury D; Lieberman J
    Adv Exp Med Biol; 2008; 615():299-329. PubMed ID: 18437900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditional guide RNA through two intermediate hairpins for programmable CRISPR/Cas9 function: building regulatory connections between endogenous RNA expressions.
    Lin J; Liu Y; Lai P; Ye H; Xu L
    Nucleic Acids Res; 2020 Nov; 48(20):11773-11784. PubMed ID: 33068434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional feedbacks in mammalian signal transduction pathways facilitate rapid and reliable protein induction.
    Blüthgen N
    Mol Biosyst; 2010 Jul; 6(7):1277-84. PubMed ID: 20449523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression.
    Shen S; Rodrigo G; Prakash S; Majer E; Landrain TE; Kirov B; Daròs JA; Jaramillo A
    Nucleic Acids Res; 2015 May; 43(10):5158-70. PubMed ID: 25916845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells.
    Weinberg BH; Pham NTH; Caraballo LD; Lozanoski T; Engel A; Bhatia S; Wong WW
    Nat Biotechnol; 2017 May; 35(5):453-462. PubMed ID: 28346402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic mRNA-Based Systems in Mammalian Cells.
    Ohno H; Akamine S; Saito H
    Adv Biosyst; 2020 May; 4(5):e1900247. PubMed ID: 32402126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatic analysis of patient-derived ASPS gene expressions and ASPL-TFE3 fusion transcript levels identify potential therapeutic targets.
    Covell DG; Wallqvist A; Kenney S; Vistica DT
    PLoS One; 2012; 7(11):e48023. PubMed ID: 23226201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Gene Circuits for Mammalian Cell-Based Applications.
    Ausländer S; Fussenegger M
    Cold Spring Harb Perspect Biol; 2016 Jul; 8(7):. PubMed ID: 27194045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-transcriptional Boolean computation by combining aptazymes controlling mRNA translation initiation and tRNA activation.
    Klauser B; Saragliadis A; Ausländer S; Wieland M; Berthold MR; Hartig JS
    Mol Biosyst; 2012 Sep; 8(9):2242-8. PubMed ID: 22777205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic RNA-based logic computation in mammalian cells.
    Matsuura S; Ono H; Kawasaki S; Kuang Y; Fujita Y; Saito H
    Nat Commun; 2018 Nov; 9(1):4847. PubMed ID: 30451868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a Versatile, Programmable RNA-Binding Protein Using Designer PPR Proteins and Its Application for Splicing Control in Mammalian Cells.
    Yagi Y; Teramoto T; Kaieda S; Imai T; Sasaki T; Yagi M; Maekawa N; Nakamura T
    Cells; 2022 Nov; 11(22):. PubMed ID: 36428958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems.
    Chen YY; Jensen MC; Smolke CD
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8531-6. PubMed ID: 20421500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells.
    Cella F; Wroblewska L; Weiss R; Siciliano V
    Nat Commun; 2018 Oct; 9(1):4392. PubMed ID: 30349044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.