BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38298160)

  • 1. Boundary-Rich Carbon-Based Electrocatalysts with Manganese(II)-Coordinated Active Environment for Selective Synthesis of Hydrogen Peroxide.
    Dong LY; Wang JS; Li TY; Wu T; Hu X; Wu YT; Zhu MY; Hao GP; Lu AH
    Angew Chem Int Ed Engl; 2024 Mar; 63(13):e202317660. PubMed ID: 38298160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomically Dispersed Iron Regulating Electronic Structure of Iron Atom Clusters for Electrocatalytic H
    Xu H; Zhang S; Zhang X; Xu M; Han M; Zheng LR; Zhang Y; Wang G; Zhang H; Zhao H
    Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202314414. PubMed ID: 37946623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrosynthesis of Hydrogen Peroxide Synergistically Catalyzed by Atomic Co-N
    Li BQ; Zhao CX; Liu JN; Zhang Q
    Adv Mater; 2019 Aug; 31(35):e1808173. PubMed ID: 30968470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrosynthesis of Hydrogen Peroxide through Selective Oxygen Reduction: A Carbon Innovation from Active Site Engineering to Device Design.
    Zhang Q; Chen Y; Pan J; Daiyan R; Lovell EC; Yun J; Amal R; Lu X
    Small; 2023 Oct; 19(40):e2302338. PubMed ID: 37267930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice Strained B-Doped Ni Nanoparticles for Efficient Electrochemical H
    Fu H; Zhang N; Lai F; Zhang L; Wu Z; Li H; Zhu H; Liu T
    Small; 2022 Sep; 18(38):e2203510. PubMed ID: 35983928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect Engineering of 2D Copper Tin Composite Nanosheets Realizing Promoted Electrosynthesis Performance of Hydrogen Peroxide.
    Qian J; Liu W; Jiang Y; Ye L; Wei X; Xi S; Shi L; Zeng L
    Small; 2024 Mar; 20(11):e2306485. PubMed ID: 37941515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-Based Electrocatalysts for Efficient Hydrogen Peroxide Production.
    Bu Y; Wang Y; Han GF; Zhao Y; Ge X; Li F; Zhang Z; Zhong Q; Baek JB
    Adv Mater; 2021 Dec; 33(49):e2103266. PubMed ID: 34562030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting Oxygen Reduction for High-Efficiency H
    Shen H; Qiu N; Yang L; Guo X; Zhang K; Thomas T; Du S; Zheng Q; Attfield JP; Zhu Y; Yang M
    Small; 2022 Apr; 18(17):e2200730. PubMed ID: 35324078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-based Catalysts for Selective H
    Zheng R; Meng Q; Zhang L; Ge J; Liu C; Xing W; Xiao M
    Chemistry; 2023 Feb; 29(12):e202203180. PubMed ID: 36378121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design Strategies of Non-Noble Metal-Based Electrocatalysts for Two-Electron Oxygen Reduction to Hydrogen Peroxide.
    Zhao H; Yuan ZY
    ChemSusChem; 2021 Apr; 14(7):1616-1633. PubMed ID: 33587818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Effects in N,O-Comodified Carbon Nanotubes Boost Highly Selective Electrochemical Oxygen Reduction to H
    Xu S; Lu R; Sun K; Tang J; Cen Y; Luo L; Wang Z; Tian S; Sun X
    Adv Sci (Weinh); 2022 Sep; 9(27):e2201421. PubMed ID: 35901499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Selectivity in the Electroproduction of H
    Xiang F; Zhao X; Yang J; Li N; Gong W; Liu Y; Burguete-Lopez A; Li Y; Niu X; Fratalocchi A
    Adv Mater; 2023 Feb; 35(7):e2208533. PubMed ID: 36448504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficiency Electroreduction of O
    Li ZM; Zhang CQ; Liu C; Zhang HW; Song H; Zhang ZQ; Wei GF; Bao XJ; Yu CZ; Yuan P
    Angew Chem Int Ed Engl; 2024 Jan; 63(2):e202314266. PubMed ID: 37940614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition Engineering of Amorphous Nickel Boride Nanoarchitectures Enabling Highly Efficient Electrosynthesis of Hydrogen Peroxide.
    Wu J; Hou M; Chen Z; Hao W; Pan X; Yang H; Cen W; Liu Y; Huang H; Menezes PW; Kang Z
    Adv Mater; 2022 Aug; 34(32):e2202995. PubMed ID: 35736517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Edge-Site-Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Production.
    Sa YJ; Kim JH; Joo SH
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):1100-1105. PubMed ID: 30548090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Two-Electron Oxygen-Reduction Pathways for H
    Yang X; Zeng Y; Alnoush W; Hou Y; Higgins D; Wu G
    Adv Mater; 2022 Jun; 34(23):e2107954. PubMed ID: 35133688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Structure Regulation of Single-Atom Catalysts for Electrochemical Oxygen Reduction to H
    Liu J; Gong Z; Yan M; He G; Gong H; Ye G; Fei H
    Small; 2022 Jan; 18(3):e2103824. PubMed ID: 34729914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Neutral H2O2 Electrosynthesis from Favorable Reaction Microenvironments via Porous Carbon Carrier Engineering.
    Jing L; Wang W; Tian Q; Kong Y; Ye X; Yang H; Hu Q; He C
    Angew Chem Int Ed Engl; 2024 May; ():e202403023. PubMed ID: 38763905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling the Cationic Promotion Effect of H
    Lee J; Lim JS; Yim G; Jang H; Joo SH; Sa YJ
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59904-59914. PubMed ID: 34882382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.