These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38298420)

  • 21. Differences in Expansion Potential of Naive Chimeric Antigen Receptor T Cells from Healthy Donors and Untreated Chronic Lymphocytic Leukemia Patients.
    Hoffmann JM; Schubert ML; Wang L; Hückelhoven A; Sellner L; Stock S; Schmitt A; Kleist C; Gern U; Loskog A; Wuchter P; Hofmann S; Ho AD; Müller-Tidow C; Dreger P; Schmitt M
    Front Immunol; 2017; 8():1956. PubMed ID: 29375575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gamma-Delta CAR-T Cells Show CAR-Directed and Independent Activity Against Leukemia.
    Rozenbaum M; Meir A; Aharony Y; Itzhaki O; Schachter J; Bank I; Jacoby E; Besser MJ
    Front Immunol; 2020; 11():1347. PubMed ID: 32714329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bryostatin Activates CAR T-Cell Antigen-Non-Specific Killing (CTAK), and CAR-T NK-Like Killing for Pre-B ALL, While Blocking Cytolysis of a Burkitt Lymphoma Cell Line.
    Wang L; Zhang Y; Anderson E; Lamble A; Orentas RJ
    Front Immunol; 2022; 13():825364. PubMed ID: 35222407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells.
    Klöß S; Oberschmidt O; Morgan M; Dahlke J; Arseniev L; Huppert V; Granzin M; Gardlowski T; Matthies N; Soltenborn S; Schambach A; Koehl U
    Hum Gene Ther; 2017 Oct; 28(10):897-913. PubMed ID: 28810809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upregulation of CD22 by Chidamide promotes CAR T cells functionality.
    Yang X; Yu Q; Xu H; Zhou J
    Sci Rep; 2021 Oct; 11(1):20637. PubMed ID: 34667217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effectiveness and safety of CD22 and CD19 dual-targeting chimeric antigen receptor T-cell therapy in patients with relapsed or refractory B-cell malignancies: A meta-analysis.
    Nguyen TT; Thanh Nhu N; Chen CL; Lin CF
    Cancer Med; 2023 Sep; 12(18):18767-18785. PubMed ID: 37667978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Safety and efficacy of co-administration of CD19 and CD22 CAR-T cells in children with B-ALL relapse after CD19 CAR-T therapy.
    Li W; Ding L; Shi W; Wan X; Yang X; Yang J; Wang T; Song L; Wang X; Ma Y; Luo C; Tang J; Gu L; Chen J; Lu J; Tang Y; Li B
    J Transl Med; 2023 Mar; 21(1):213. PubMed ID: 36949487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preclinical Development of Bivalent Chimeric Antigen Receptors Targeting Both CD19 and CD22.
    Qin H; Ramakrishna S; Nguyen S; Fountaine TJ; Ponduri A; Stetler-Stevenson M; Yuan CM; Haso W; Shern JF; Shah NN; Fry TJ
    Mol Ther Oncolytics; 2018 Dec; 11():127-137. PubMed ID: 30581986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient elimination of primary B-ALL cells in vitro and in vivo using a novel 4-1BB-based CAR targeting a membrane-distal CD22 epitope.
    Velasco-Hernandez T; Zanetti SR; Roca-Ho H; Gutierrez-Aguera F; Petazzi P; Sánchez-Martínez D; Molina O; Baroni ML; Fuster JL; Ballerini P; Bueno C; Fernandez-Fuentes N; Engel P; Menendez P
    J Immunother Cancer; 2020 Aug; 8(2):. PubMed ID: 32788237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines.
    Schneider D; Xiong Y; Wu D; Nӧlle V; Schmitz S; Haso W; Kaiser A; Dropulic B; Orentas RJ
    J Immunother Cancer; 2017; 5():42. PubMed ID: 28515942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of CD22 in Triple-Negative Breast Cancer: A Novel Prognostic Biomarker and Potential Target for CAR Therapy.
    Zaib T; Cheng K; Liu T; Mei R; Liu Q; Zhou X; He L; Rashid H; Xie Q; Khan H; Xu Y; Sun P; Wu J
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of Automated Separation, Expansion, and Quality Control Protocols for Clinical-Scale Manufacturing of Primary Human NK Cells and Alpharetroviral Chimeric Antigen Receptor Engineering.
    Oberschmidt O; Morgan M; Huppert V; Kessler J; Gardlowski T; Matthies N; Aleksandrova K; Arseniev L; Schambach A; Koehl U; Kloess S
    Hum Gene Ther Methods; 2019 Jun; 30(3):102-120. PubMed ID: 30997855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manufacturing chimeric antigen receptor T cells from cryopreserved peripheral blood cells: time for a collect-and-freeze model?
    Palen K; Zurko J; Johnson BD; Hari P; Shah NN
    Cytotherapy; 2021 Nov; 23(11):985-990. PubMed ID: 34538575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Vivo Generation of CAR T Cells Selectively in Human CD4
    Agarwal S; Hanauer JDS; Frank AM; Riechert V; Thalheimer FB; Buchholz CJ
    Mol Ther; 2020 Aug; 28(8):1783-1794. PubMed ID: 32485137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Point-Of-Care CAR T-Cell Production (ARI-0001) Using a Closed Semi-automatic Bioreactor: Experience From an Academic Phase I Clinical Trial.
    Castella M; Caballero-Baños M; Ortiz-Maldonado V; González-Navarro EA; Suñé G; Antoñana-Vidósola A; Boronat A; Marzal B; Millán L; Martín-Antonio B; Cid J; Lozano M; García E; Tabera J; Trias E; Perpiña U; Canals JM; Baumann T; Benítez-Ribas D; Campo E; Yagüe J; Urbano-Ispizua Á; Rives S; Delgado J; Juan M
    Front Immunol; 2020; 11():482. PubMed ID: 32528460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional Improvement of Chimeric Antigen Receptor Through Intrinsic Interleukin-15Rα Signaling.
    Nair S; Wang JB; Tsao ST; Liu Y; Zhu W; Slayton WB; Moreb JS; Dong L; Chang LJ
    Curr Gene Ther; 2019; 19(1):40-53. PubMed ID: 30444200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Manufacturing development and clinical production of NKG2D chimeric antigen receptor-expressing T cells for autologous adoptive cell therapy.
    Murad JM; Baumeister SH; Werner L; Daley H; Trébéden-Negre H; Reder J; Sentman CL; Gilham D; Lehmann F; Snykers S; Sentman ML; Wade T; Schmucker A; Fanger MW; Dranoff G; Ritz J; Nikiforow S
    Cytotherapy; 2018 Jul; 20(7):952-963. PubMed ID: 30180944
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trispecific CD19-CD20-CD22-targeting duoCAR-T cells eliminate antigen-heterogeneous B cell tumors in preclinical models.
    Schneider D; Xiong Y; Wu D; Hu P; Alabanza L; Steimle B; Mahmud H; Anthony-Gonda K; Krueger W; Zhu Z; Dimitrov DS; Orentas RJ; Dropulić B
    Sci Transl Med; 2021 Mar; 13(586):. PubMed ID: 33762438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Programmed death-ligand 1 expression on CD22-specific chimeric antigen receptor-modified T cells weakens antitumor potential.
    Liu J; Zhang F; Yu J; Zhao Q
    MedComm (2020); 2022 Jun; 3(2):e140. PubMed ID: 35665369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manufacture of Chimeric Antigen Receptor T Cells from Mobilized Cyropreserved Peripheral Blood Stem Cell Units Depends on Monocyte Depletion.
    Künkele A; Brown C; Beebe A; Mgebroff S; Johnson AJ; Taraseviciute A; Rolczynski LS; Chang CA; Finney OC; Park JR; Jensen MC
    Biol Blood Marrow Transplant; 2019 Feb; 25(2):223-232. PubMed ID: 30315942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.