These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 38298608)

  • 1. Phosphate accumulation in rice leaves promotes fungal pathogenicity and represses host immune responses during pathogen infection.
    Martín-Cardoso H; Bundó M; Val-Torregrosa B; San Segundo B
    Front Plant Sci; 2023; 14():1330349. PubMed ID: 38298608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate excess increases susceptibility to pathogen infection in rice.
    Campos-Soriano L; Bundó M; Bach-Pages M; Chiang SF; Chiou TJ; San Segundo B
    Mol Plant Pathol; 2020 Apr; 21(4):555-570. PubMed ID: 32072745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Two Metacaspases in Development and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae.
    Fernandez J; Lopez V; Kinch L; Pfeifer MA; Gray H; Garcia N; Grishin NV; Khang CH; Orth K
    mBio; 2021 Feb; 12(1):. PubMed ID: 33563831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice.
    Park JY; Jin J; Lee YW; Kang S; Lee YH
    Plant Physiol; 2009 Jan; 149(1):474-86. PubMed ID: 18987215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biotrophy-associated secreted protein 4 (BAS4) participates in the transition of
    Wang C; Liu Y; Liu L; Wang Y; Yan J; Wang C; Li C; Yang J
    Saudi J Biol Sci; 2019 May; 26(4):795-807. PubMed ID: 31049006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signaling defense responses of upland rice to avirulent and virulent strains of Magnaporthe oryzae.
    Sperandio EM; Alves TM; Vale HMMD; Gonçalves LA; Silva ECE; Filippi MCC
    J Plant Physiol; 2020 Oct; 253():153271. PubMed ID: 32927133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae.
    Jones K; Kim DW; Park JS; Khang CH
    BMC Plant Biol; 2016 Mar; 16():69. PubMed ID: 27000073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron Induces Resistance Against the Rice Blast Fungus Magnaporthe oryzae Through Potentiation of Immune Responses.
    Sánchez-Sanuy F; Mateluna-Cuadra R; Tomita K; Okada K; Sacchi GA; Campo S; San Segundo B
    Rice (N Y); 2022 Dec; 15(1):68. PubMed ID: 36566483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron- and Reactive Oxygen Species-Dependent Ferroptotic Cell Death in Rice-
    Dangol S; Chen Y; Hwang BK; Jwa NS
    Plant Cell; 2019 Jan; 31(1):189-209. PubMed ID: 30563847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nonclassically secreted effector of Magnaporthe oryzae targets host nuclei and plays important roles in fungal growth and plant infection.
    Chen X; Pan S; Bai H; Fan J; Batool W; Shabbir A; Han Y; Zheng H; Lu G; Lin L; Tang W; Wang Z
    Mol Plant Pathol; 2023 Sep; 24(9):1093-1106. PubMed ID: 37306516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spray-Induced Silencing of Pathogenicity Gene
    Sarkar A; Roy-Barman S
    Front Plant Sci; 2021; 12():733129. PubMed ID: 34899771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osa-miR7695 enhances transcriptional priming in defense responses against the rice blast fungus.
    Sánchez-Sanuy F; Peris-Peris C; Tomiyama S; Okada K; Hsing YI; San Segundo B; Campo S
    BMC Plant Biol; 2019 Dec; 19(1):563. PubMed ID: 31852430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Every Coin Has Two Sides: Reactive Oxygen Species during Rice⁻
    Kou Y; Qiu J; Tao Z
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An S-(hydroxymethyl)glutathione dehydrogenase is involved in conidiation and full virulence in the rice blast fungus Magnaporthe oryzae.
    Zhang Z; Wang J; Chai R; Qiu H; Jiang H; Mao X; Wang Y; Liu F; Sun G
    PLoS One; 2015; 10(3):e0120627. PubMed ID: 25793615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice.
    Park CH; Chen S; Shirsekar G; Zhou B; Khang CH; Songkumarn P; Afzal AJ; Ning Y; Wang R; Bellizzi M; Valent B; Wang GL
    Plant Cell; 2012 Nov; 24(11):4748-62. PubMed ID: 23204406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase of Fungal Pathogenicity and Role of Plant Glutamine in Nitrogen-Induced Susceptibility (NIS) To Rice Blast.
    Huang H; Nguyen Thi Thu T; He X; Gravot A; Bernillon S; Ballini E; Morel JB
    Front Plant Sci; 2017; 8():265. PubMed ID: 28293247
    [No Abstract]   [Full Text] [Related]  

  • 17. Effector-triggered susceptibility by the rice blast fungus Magnaporthe oryzae.
    Oliveira-Garcia E; Yan X; Oses-Ruiz M; de Paula S; Talbot NJ
    New Phytol; 2024 Feb; 241(3):1007-1020. PubMed ID: 38073141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae.
    He M; Xu Y; Chen J; Luo Y; Lv Y; Su J; Kershaw MJ; Li W; Wang J; Yin J; Zhu X; Liu X; Chern M; Ma B; Wang J; Qin P; Chen W; Wang Y; Wang W; Ren Z; Wu X; Li P; Li S; Peng Y; Lin F; Talbot NJ; Chen X
    Autophagy; 2018; 14(9):1543-1561. PubMed ID: 29929416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae.
    Li Y; Lu YG; Shi Y; Wu L; Xu YJ; Huang F; Guo XY; Zhang Y; Fan J; Zhao JQ; Zhang HY; Xu PZ; Zhou JM; Wu XJ; Wang PR; Wang WM
    Plant Physiol; 2014 Feb; 164(2):1077-92. PubMed ID: 24335508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens.
    Saitoh H; Fujisawa S; Mitsuoka C; Ito A; Hirabuchi A; Ikeda K; Irieda H; Yoshino K; Yoshida K; Matsumura H; Tosa Y; Win J; Kamoun S; Takano Y; Terauchi R
    PLoS Pathog; 2012; 8(5):e1002711. PubMed ID: 22589729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.