BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38298645)

  • 1. Analysis of the b, p values, and the fractal dimension of aftershocks sequences following two major earthquakes in central Himalaya.
    Tiwari RK; Paudyal H
    Heliyon; 2024 Jan; 10(2):e24476. PubMed ID: 38298645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aftershock analysis of the 2015 Gorkha-Dolakha (Central Nepal) earthquake doublet.
    Thapa DR; Tao X; Fan F; Tao Z
    Heliyon; 2018 Jul; 4(7):e00678. PubMed ID: 29998197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong ground motion data of the 2015 Gorkha Nepal earthquake sequence in the Kathmandu Valley.
    Shigefuji M; Takai N; Bijukchhen S; Ichiyanagi M; Rajaure S; Dhital MR; Paudel LP; Sasatani T
    Sci Data; 2022 Aug; 9(1):513. PubMed ID: 35987903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common dependence on stress for the two fundamental laws of statistical seismology.
    Narteau C; Byrdina S; Shebalin P; Schorlemmer D
    Nature; 2009 Dec; 462(7273):642-5. PubMed ID: 19956258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aftershocks are fluid-driven and decay rates controlled by permeability dynamics.
    Miller SA
    Nat Commun; 2020 Nov; 11(1):5787. PubMed ID: 33188178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous power law distribution of total lifetimes of branching processes: application to earthquake aftershock sequences.
    Saichev A; Sornette D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046123. PubMed ID: 15600476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Audit of stored strain energy and extent of future earthquake rupture in central Himalaya.
    Sreejith KM; Sunil PS; Agrawal R; Saji AP; Rajawat AS; Ramesh DS
    Sci Rep; 2018 Nov; 8(1):16697. PubMed ID: 30420673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial mapping of b-value and fractal dimension prior to November 8, 2022 Doti Earthquake, Nepal.
    Tiwari RK; Paudyal H
    PLoS One; 2023; 18(8):e0289673. PubMed ID: 37556467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship of preseismic, coseismic, and postseismic fault ruptures of two large interplate aftershocks of the 2011 Tohoku earthquake with slow-earthquake activity.
    Kubo H; Nishikawa T
    Sci Rep; 2020 Jul; 10(1):12044. PubMed ID: 32694554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral variation of the Main Himalayan Thrust controls the rupture length of the 2015 Gorkha earthquake in Nepal.
    Bai L; Klemperer SL; Mori J; Karplus MS; Ding L; Liu H; Li G; Song B; Dhakal S
    Sci Adv; 2019 Jun; 5(6):eaav0723. PubMed ID: 31249863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The source parameters, surface deformation and tectonic setting of three recent earthquakes: thessalonki (Greece), tabas-e-golshan (iran) and carlisle (u.k.).
    King G; Soufleris C; Berberian M
    Disasters; 1981 Mar; 5(1):36-46. PubMed ID: 20958479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impairment and Functional Status of People with Disabilities Following Nepal Earthquake 2015.
    Bimali I; Adhikari SP; Baidya S; Shakya NR
    Kathmandu Univ Med J (KUMJ); 2018 Oct.-Dec.; 16(64):285-289. PubMed ID: 31729340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fault slip and identification of the second fault plane in the Varzeghan earthquake doublet.
    Amini S; Roberts R; Raeesi M; Shomali ZH; Lund B; Zarifi Z
    J Seismol; 2018; 22(4):815-831. PubMed ID: 29997450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake.
    Kargel JS; Leonard GJ; Shugar DH; Haritashya UK; Bevington A; Fielding EJ; Fujita K; Geertsema M; Miles ES; Steiner J; Anderson E; Bajracharya S; Bawden GW; Breashears DF; Byers A; Collins B; Dhital MR; Donnellan A; Evans TL; Geai ML; Glasscoe MT; Green D; Gurung DR; Heijenk R; Hilborn A; Hudnut K; Huyck C; Immerzeel WW; Liming J; Jibson R; Kääb A; Khanal NR; Kirschbaum D; Kraaijenbrink PD; Lamsal D; Shiyin L; Mingyang L; McKinney D; Nahirnick NK; Zhuotong N; Ojha S; Olsenholler J; Painter TH; Pleasants M; Pratima KC; Yuan QI; Raup BH; Regmi D; Rounce DR; Sakai A; Donghui S; Shea JM; Shrestha AB; Shukla A; Stumm D; van der Kooij M; Voss K; Xin W; Weihs B; Wolfe D; Lizong W; Xiaojun Y; Yoder MR; Young N
    Science; 2016 Jan; 351(6269):aac8353. PubMed ID: 26676355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of fault constitutive properties for earthquake prediction.
    Dieterich JH; Kilgore B
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):3787-94. PubMed ID: 11607666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion of epicenters of earthquake aftershocks, Omori's law, and generalized continuous-time random walk models.
    Helmstetter A; Sornette D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061104. PubMed ID: 12513267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tectonic Implication of the 2022
    Yin X; Zhai H; Cai R; Qiu J; Zou X
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scale-free networks of earthquakes and aftershocks.
    Baiesi M; Paczuski M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066106. PubMed ID: 15244666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connecting a broad spectrum of transient slip on the San Andreas fault.
    Tan YJ; Marsan D
    Sci Adv; 2020 Aug; 6(33):eabb2489. PubMed ID: 32851174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning of aftershock patterns following large earthquakes.
    DeVries PMR; Viégas F; Wattenberg M; Meade BJ
    Nature; 2018 Aug; 560(7720):632-634. PubMed ID: 30158606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.