These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38298695)

  • 1. Multiparametric MRI-based radiomics combined with pathomics features for prediction of the efficacy of neoadjuvant chemotherapy in breast cancer.
    Xu N; Guo X; Ouyang Z; Ran F; Li Q; Duan X; Zhu Y; Niu X; Liao C; Yang J
    Heliyon; 2024 Jan; 10(2):e24371. PubMed ID: 38298695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study.
    Feng L; Liu Z; Li C; Li Z; Lou X; Shao L; Wang Y; Huang Y; Chen H; Pang X; Liu S; He F; Zheng J; Meng X; Xie P; Yang G; Ding Y; Wei M; Yun J; Hung MC; Zhou W; Wahl DR; Lan P; Tian J; Wan X
    Lancet Digit Health; 2022 Jan; 4(1):e8-e17. PubMed ID: 34952679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive radiopathological nomogram for the prediction of pathological staging in gastric cancer using CT-derived and WSI-based features.
    Tan Y; Feng LJ; Huang YH; Xue JW; Long LL; Feng ZB
    Transl Oncol; 2024 Feb; 40():101864. PubMed ID: 38141376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Multiparametric MRI Radiomics-Based Nomogram in Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Two-Center study.
    Wang X; Hua H; Han J; Zhong X; Liu J; Chen J
    Clin Breast Cancer; 2023 Aug; 23(6):e331-e344. PubMed ID: 37321954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Preoperative prediction of HER-2 expression status in breast cancer based on MRI radiomics model].
    Zhang Y; Huang H; Yin L; Wang ZX; Lu SY; Wang XX; Xiang LL; Zhang Q; Zhang JL; Shan XH
    Zhonghua Zhong Liu Za Zhi; 2024 May; 46(5):428-437. PubMed ID: 38742356
    [No Abstract]   [Full Text] [Related]  

  • 6. Development and validation of a Radiopathomics model based on CT scans and whole slide images for discriminating between Stage I-II and Stage III gastric cancer.
    Tan Y; Feng LJ; Huang YH; Xue JW; Feng ZB; Long LL
    BMC Cancer; 2024 Mar; 24(1):368. PubMed ID: 38519974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated radiopathomics machine learning model to predict pathological response to preoperative chemotherapy in gastric cancer.
    Song Y; Liu S; Liu X; Jia H; Shi H; Liu X; Hao D; Wang H; Xing X
    Acad Radiol; 2024 Aug; ():. PubMed ID: 39214816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparametric MRI and Whole Slide Image-Based Pretreatment Prediction of Pathological Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer: A Multicenter Radiopathomic Study.
    Shao L; Liu Z; Feng L; Lou X; Li Z; Zhang XY; Wan X; Zhou X; Sun K; Zhang DF; Wu L; Yang G; Sun YS; Xu R; Fan X; Tian J
    Ann Surg Oncol; 2020 Oct; 27(11):4296-4306. PubMed ID: 32729045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI-based radiomics signature for pretreatment prediction of pathological response to neoadjuvant chemotherapy in osteosarcoma: a multicenter study.
    Chen H; Zhang X; Wang X; Quan X; Deng Y; Lu M; Wei Q; Ye Q; Zhou Q; Xiang Z; Liang C; Yang W; Zhao Y
    Eur Radiol; 2021 Oct; 31(10):7913-7924. PubMed ID: 33825032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics].
    Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L
    Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172
    [No Abstract]   [Full Text] [Related]  

  • 11. A pretreatment multiparametric MRI-based radiomics-clinical machine learning model for predicting radiation-induced temporal lobe injury in patients with nasopharyngeal carcinoma.
    Wang L; Qiu T; Zhou J; Zhu Y; Sun B; Yang G; Huang S; Wu L; He X
    Head Neck; 2024 Sep; 46(9):2132-2144. PubMed ID: 38887926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer.
    Zhang YF; Zhou C; Guo S; Wang C; Yang J; Yang ZJ; Wang R; Zhang X; Zhou FH
    J Cancer Res Clin Oncol; 2024 Feb; 150(2):78. PubMed ID: 38316655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X
    Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glioma grading prediction using multiparametric magnetic resonance imaging-based radiomics combined with proton magnetic resonance spectroscopy and diffusion tensor imaging.
    Lin K; Cidan W; Qi Y; Wang X
    Med Phys; 2022 Jul; 49(7):4419-4429. PubMed ID: 35366379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of breast cancer and axillary positive-node response to neoadjuvant chemotherapy based on multi-parametric magnetic resonance imaging radiomics models.
    Lin Y; Wang J; Li M; Zhou C; Hu Y; Wang M; Zhang X
    Breast; 2024 Aug; 76():103737. PubMed ID: 38696854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning-Based Radiomics Nomogram Using Magnetic Resonance Images for Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer Patients.
    Chen S; Shu Z; Li Y; Chen B; Tang L; Mo W; Shao G; Shao F
    Front Oncol; 2020; 10():1410. PubMed ID: 32923392
    [No Abstract]   [Full Text] [Related]  

  • 17. Development and validation of a radiopathomic model for predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer patients.
    Zhang J; Wu Q; Yin W; Yang L; Xiao B; Wang J; Yao X
    BMC Cancer; 2023 May; 23(1):431. PubMed ID: 37173635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers.
    Huang Y; Yao Z; Li L; Mao R; Huang W; Hu Z; Hu Y; Wang Y; Guo R; Tang X; Yang L; Wang Y; Luo R; Yu J; Zhou J
    EBioMedicine; 2023 Aug; 94():104706. PubMed ID: 37478528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiomics of Multiparametric MRI for Pretreatment Prediction of Pathologic Complete Response to Neoadjuvant Chemotherapy in Breast Cancer: A Multicenter Study.
    Liu Z; Li Z; Qu J; Zhang R; Zhou X; Li L; Sun K; Tang Z; Jiang H; Li H; Xiong Q; Ding Y; Zhao X; Wang K; Liu Z; Tian J
    Clin Cancer Res; 2019 Jun; 25(12):3538-3547. PubMed ID: 30842125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can we predict pathology without surgery? Weighing the added value of multiparametric MRI and whole prostate radiomics in integrative machine learning models.
    Marvaso G; Isaksson LJ; Zaffaroni M; Vincini MG; Summers PE; Pepa M; Corrao G; Mazzola GC; Rotondi M; Mastroleo F; Raimondi S; Alessi S; Pricolo P; Luzzago S; Mistretta FA; Ferro M; Cattani F; Ceci F; Musi G; De Cobelli O; Cremonesi M; Gandini S; La Torre D; Orecchia R; Petralia G; Jereczek-Fossa BA
    Eur Radiol; 2024 Oct; 34(10):6241-6253. PubMed ID: 38507053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.