These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38298912)

  • 1. Emergence of number sense through the integration of multimodal information: developmental learning insights from neural network models.
    Noda K; Soda T; Yamashita Y
    Front Neurosci; 2024; 18():1330512. PubMed ID: 38298912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of novel deep multimodal representation learning-based model for the differentiation of liver tumors on B-mode ultrasound images.
    Sato M; Kobayashi T; Soroida Y; Tanaka T; Nakatsuka T; Nakagawa H; Nakamura A; Kurihara M; Endo M; Hikita H; Sato M; Gotoh H; Iwai T; Tateishi R; Koike K; Yatomi Y
    J Gastroenterol Hepatol; 2022 Apr; 37(4):678-684. PubMed ID: 34911147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodal information bottleneck for deep reinforcement learning with multiple sensors.
    You B; Liu H
    Neural Netw; 2024 Aug; 176():106347. PubMed ID: 38688069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ki-Cook: clustering multimodal cooking representations through knowledge-infused learning.
    Venkataramanan R; Padhee S; Rao SR; Kaoshik R; Sundara Rajan A; Sheth A
    Front Big Data; 2023; 6():1200840. PubMed ID: 37554262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerosity discrimination in deep neural networks: Initial competence, developmental refinement and experience statistics.
    Testolin A; Zou WY; McClelland JL
    Dev Sci; 2020 Sep; 23(5):e12940. PubMed ID: 31977137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frontoparietal and salience network synchronizations during nonsymbolic magnitude processing predict brain age and mathematical performance in youth.
    Ng CT; Huang PH; Cho YC; Lee PH; Liu YC; Chang TT
    Hum Brain Mapp; 2024 Aug; 45(11):e26777. PubMed ID: 39046114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Associating Latent Representations With Cognitive Maps via Hyperspherical Space for Neural Population Spikes.
    Huang Y; Yu ZL
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2886-2895. PubMed ID: 36215357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harmonized Multimodal Learning with Gaussian Process Latent Variable Models.
    Song G; Wang S; Huang Q; Tian Q
    IEEE Trans Pattern Anal Mach Intell; 2021 Mar; 43(3):858-872. PubMed ID: 31545710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning Numerosity Representations with Transformers: Number Generation Tasks and Out-of-Distribution Generalization.
    Boccato T; Testolin A; Zorzi M
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CAMR: cross-aligned multimodal representation learning for cancer survival prediction.
    Wu X; Shi Y; Wang M; Li A
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36637188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The calculating brain.
    Nieder A
    Physiol Rev; 2025 Jan; 105(1):267-314. PubMed ID: 39115439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tale of two lexica: Investigating computational pressures on word representation with neural networks.
    Avcu E; Hwang M; Brown KS; Gow DW
    Front Artif Intell; 2023; 6():1062230. PubMed ID: 37051161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning-induced reorganization of number neurons and emergence of numerical representations in a biologically inspired neural network.
    Mistry PK; Strock A; Liu R; Young G; Menon V
    Nat Commun; 2023 Jun; 14(1):3843. PubMed ID: 37386013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Challenge of Modeling the Acquisition of Mathematical Concepts.
    Testolin A
    Front Hum Neurosci; 2020; 14():100. PubMed ID: 32265678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal Representation Learning via Graph Isomorphism Network for Toxicity Multitask Learning.
    Wang G; Feng H; Du M; Feng Y; Cao C
    J Chem Inf Model; 2024 Nov; 64(21):8322-8338. PubMed ID: 39432821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patient Representation Learning From Heterogeneous Data Sources and Knowledge Graphs Using Deep Collective Matrix Factorization: Evaluation Study.
    Kumar S; Nanelia A; Mariappan R; Rajagopal A; Rajan V
    JMIR Med Inform; 2022 Jan; 10(1):e28842. PubMed ID: 35049514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Representation Learning For Multimodal Brain Networks.
    Zhang W; Zhan L; Thompson P; Wang Y
    Med Image Comput Comput Assist Interv; 2020; 12267():613-624. PubMed ID: 34296225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep multimodal saliency parcellation of cerebellar pathways: Linking microstructure and individual function through explainable multitask learning.
    Tchetchenian A; Zekelman L; Chen Y; Rushmore J; Zhang F; Yeterian EH; Makris N; Rathi Y; Meijering E; Song Y; O'Donnell LJ
    Hum Brain Mapp; 2024 Aug; 45(12):e70008. PubMed ID: 39185598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks.
    Beguš G
    Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.