BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38299)

  • 1. Studies on the control of pineal indole synthesis: cyclic nucleotides, adenylate cyclase and phosphodiesterase.
    Oleshansky MA; Neff NH
    J Neural Transm Suppl; 1978; (13):81-95. PubMed ID: 38299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity and cyclic nucleotides in the rat pineal gland.
    Zatz M
    J Neural Transm Suppl; 1978; (13):97-114. PubMed ID: 224142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of chronic reserpine administration on beta adrenergic receptors, adenylate cyclase and phosphodiesterase of the rat submandibular gland.
    Bylund DB; Forte LR; Morgan DW; Martinez JR
    J Pharmacol Exp Ther; 1981 Jul; 218(1):134-41. PubMed ID: 6113277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subsensitivity of the beta-adrenergic receptor-linked adenylate cyclase system of rat pineal gland following repeated treatment with desmethylimipramine and nialamide.
    Moyer JA; Greenberg LH; Frazer A; Weiss B
    Mol Pharmacol; 1981 Mar; 19(2):187-93. PubMed ID: 6262613
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of parotid gland function by cyclic nucleotides and calcium.
    Butcher FR; Putney JW
    Adv Cyclic Nucleotide Res; 1980; 13():215-49. PubMed ID: 6158259
    [No Abstract]   [Full Text] [Related]  

  • 6. Postsynaptic induction of serotonin N-acetyltransferase activity and the control of cyclic nucleotide metabolism in organ cultures of the rat pineal.
    Minneman KP
    Mol Pharmacol; 1977 Jul; 13(4):735-45. PubMed ID: 196176
    [No Abstract]   [Full Text] [Related]  

  • 7. Daily rhythm in pineal phosphodiesterase (PDE) activity reflects adrenergic/3',5'-cyclic adenosine 5'-monophosphate induction of the PDE4B2 variant.
    Kim JS; Bailey MJ; Ho AK; Møller M; Gaildrat P; Klein DC
    Endocrinology; 2007 Apr; 148(4):1475-85. PubMed ID: 17204557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor-associated changes of the catecholamine-sensitive adenylate cyclase in glioma cells doubly transformed with Moloney sarcoma virus.
    Higashida H; Miki N; Tanaka T; Kato K; Nakano T; Nagatsu T; Kano-Tanaka K
    J Cell Physiol; 1982 Feb; 110(2):107-13. PubMed ID: 6279681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of diurnal cycles on biochemical parameters of drug sensitivity: the pineal gland as a model.
    Romero JA
    Fed Proc; 1976 Apr; 35(5):1157-61. PubMed ID: 4341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin stimulation of cyclic AMP phosphodiesterase is independent from the G-protein pathways involved in adenylate cyclase regulation.
    Weber HW; Chung FZ; Day K; Appleman MM
    J Cyclic Nucleotide Protein Phosphor Res; 1986; 11(5):345-54. PubMed ID: 3040818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Norepinephrine-sensitive adenylate cyclase system in rat brain: role of adrenal corticosteroids.
    Mobley PL; Manier DH; Sulser F
    J Pharmacol Exp Ther; 1983 Jul; 226(1):71-7. PubMed ID: 6306226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rat pineal arylalkylamine-N-acetyltransferase: cyclic AMP inducibility of its gene depends on prior entrained photoperiod.
    Engel L; Mathes A; Schwerdtle I; Heinrich B; Pogorzelski B; Holthues H; Vollrath L; Spessert R
    Brain Res Mol Brain Res; 2004 Apr; 123(1-2):45-55. PubMed ID: 15046865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenylate cyclase, cyclic nucleotide phosphodiesterase, and norepinephrine binding in rat heart membranes.
    Moffet FJ; Kidwai AM; Bär HP
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():183-91. PubMed ID: 176694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catecholamine receptor supersensitivity and subsensitivity in the central nervous system.
    Gnegy ME; Costa E
    Essays Neurochem Neuropharmacol; 1980; 4():249-82. PubMed ID: 6248339
    [No Abstract]   [Full Text] [Related]  

  • 15. Desensitization of adenylate cyclase and down regulation of beta adrenergic receptors after in vivo administration of beta agonist.
    Scarpace PJ; Abrass IB
    J Pharmacol Exp Ther; 1982 Nov; 223(2):327-31. PubMed ID: 6127402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-adrenergic receptor regulation of a cyclic AMP phosphodiesterase in C6 glioma cells.
    Schwartz JP; Onali P
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():195-203. PubMed ID: 6326524
    [No Abstract]   [Full Text] [Related]  

  • 17. Cyclic AMP, adenylate cyclase and cyclic AMP-phosphodiesterase activities in diabetic rat adipocytes.
    Chiappe de Cingolani GE
    Acta Physiol Pharmacol Latinoam; 1986; 36(1):39-46. PubMed ID: 3020875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparisons of the combined contributions of agonist binding frequency and intrinsic efficiency to receptor-mediated activation of adenylate cyclase.
    Stickle D; Barber R
    Mol Pharmacol; 1991 Aug; 40(2):276-88. PubMed ID: 1678853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The human heart beta-adrenergic receptors. II. Coupling of beta 2-adrenergic receptors with the adenylate cyclase system.
    Waelbroeck M; Taton G; Delhaye M; Chatelain P; Camus JC; Pochet R; Leclerc JL; De Smet JM; Robberecht P; Christophe J
    Mol Pharmacol; 1983 Sep; 24(2):174-82. PubMed ID: 6136901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desensitization of catecholamine-stimulated adenylate cyclase and down-regulation of beta-adrenergic receptors in rat glioma C6 cells. Role of cyclic AMP and protein synthesis.
    Zaremba TG; Fishman PH
    Mol Pharmacol; 1984 Sep; 26(2):206-13. PubMed ID: 6207420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.