BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38299436)

  • 1. Novel CRISPR/Cas9 system assisted by fluorescence marker and pollen killer for high-efficiency isolation of transgene-free edited plants in rice.
    Yu D; Zhou T; Xu N; Sun X; Song S; Liu H; Sun Z; Lv Q; Chen J; Tan Y; Sheng X; Li L; Yuan D
    Plant Biotechnol J; 2024 Jun; 22(6):1649-1651. PubMed ID: 38299436
    [No Abstract]   [Full Text] [Related]  

  • 2. Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-Free Rice Plants.
    He Y; Zhu M; Wang L; Wu J; Wang Q; Wang R; Zhao Y
    Mol Plant; 2018 Sep; 11(9):1210-1213. PubMed ID: 29857174
    [No Abstract]   [Full Text] [Related]  

  • 3. H
    Wu TM; Huang JZ; Oung HM; Hsu YT; Tsai YC; Hong CY
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31404948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence Marker-Assisted Isolation of Cas9-Free and CRISPR-Edited Arabidopsis Plants.
    Yu H; Zhao Y
    Methods Mol Biol; 2019; 1917():147-154. PubMed ID: 30610634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Commercial Thermo-sensitive Genic Male Sterile Rice Accelerates Hybrid Rice Breeding Using the CRISPR/Cas9-mediated TMS5 Editing System.
    Zhou H; He M; Li J; Chen L; Huang Z; Zheng S; Zhu L; Ni E; Jiang D; Zhao B; Zhuang C
    Sci Rep; 2016 Nov; 6():37395. PubMed ID: 27874087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice.
    Shimatani Z; Fujikura U; Ishii H; Matsui Y; Suzuki M; Ueke Y; Taoka KI; Terada R; Nishida K; Kondo A
    Plant Physiol Biochem; 2018 Oct; 131():78-83. PubMed ID: 29778643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cas9 for Mutagenesis in Rice.
    Char SN; Li R; Yang B
    Methods Mol Biol; 2019; 1864():279-293. PubMed ID: 30415343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-S: an active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants.
    Lu HP; Liu SM; Xu SL; Chen WY; Zhou X; Tan YY; Huang JZ; Shu QY
    Plant Biotechnol J; 2017 Nov; 15(11):1371-1373. PubMed ID: 28688132
    [No Abstract]   [Full Text] [Related]  

  • 9. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient generation of bacterial leaf blight-resistant and transgene-free rice using a genome editing and multiplexed selection system.
    Yu K; Liu Z; Gui H; Geng L; Wei J; Liang D; Lv J; Xu J; Chen X
    BMC Plant Biol; 2021 Apr; 21(1):197. PubMed ID: 33894749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement.
    Zegeye WA; Tsegaw M; Zhang Y; Cao L
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CRISPR/Cas12a-Mediated Sensitive DNA Detection System for Gene-Edited Rice.
    Wang Z; Huang C; Wei S; Zhu P; Li Y; Fu W; Zhang Y
    J AOAC Int; 2023 May; 106(3):558-567. PubMed ID: 36847422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9.
    Dong OX; Yu S; Jain R; Zhang N; Duong PQ; Butler C; Li Y; Lipzen A; Martin JA; Barry KW; Schmutz J; Tian L; Ronald PC
    Nat Commun; 2020 Mar; 11(1):1178. PubMed ID: 32132530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplexed CRISPR-Cas9 mutagenesis of rice
    Patel-Tupper D; Kelikian A; Leipertz A; Maryn N; Tjahjadi M; Karavolias NG; Cho MJ; Niyogi KK
    Sci Adv; 2024 Jun; 10(23):eadm7452. PubMed ID: 38848363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of a FT expression cassette into CRISPR/Cas9 construct enables fast generation and easy identification of transgene-free mutants in Arabidopsis.
    Cheng Y; Zhang N; Hussain S; Ahmed S; Yang W; Wang S
    PLoS One; 2019; 14(9):e0218583. PubMed ID: 31545795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Genome Editing in Rice Protoplasts Using CRISPR/CAS9 Construct.
    Bes M; Herbert L; Mounier T; Meunier AC; Durandet F; Guiderdoni E; Périn C
    Methods Mol Biol; 2021; 2238():173-191. PubMed ID: 33471331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice.
    Li C; Li W; Zhou Z; Chen H; Xie C; Lin Y
    Plant Biotechnol J; 2020 Feb; 18(2):313-315. PubMed ID: 31344313
    [No Abstract]   [Full Text] [Related]  

  • 18. Effective identification of CRISPR/Cas9-induced and naturally occurred mutations in rice using a multiplex ligation-dependent probe amplification-based method.
    Biswas S; Li R; Hong J; Zhao X; Yuan Z; Zhang D; Shi J
    Theor Appl Genet; 2020 Aug; 133(8):2323-2334. PubMed ID: 32405769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering.
    Wada N; Ueta R; Osakabe Y; Osakabe K
    BMC Plant Biol; 2020 May; 20(1):234. PubMed ID: 32450802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice.
    Yin X; Biswal AK; Dionora J; Perdigon KM; Balahadia CP; Mazumdar S; Chater C; Lin HC; Coe RA; Kretzschmar T; Gray JE; Quick PW; Bandyopadhyay A
    Plant Cell Rep; 2017 May; 36(5):745-757. PubMed ID: 28349358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.