These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38299436)

  • 41. Pollen self-elimination CRISPR-Cas genome editing prevents transgenic pollen dispersal in maize.
    Wang H; Qi X; Zhu J; Liu C; Fan H; Zhang X; Li X; Yang Q; Xie C
    Plant Commun; 2023 Nov; 4(6):100637. PubMed ID: 37301980
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA.
    Zhang Y; Liang Z; Zong Y; Wang Y; Liu J; Chen K; Qiu JL; Gao C
    Nat Commun; 2016 Aug; 7():12617. PubMed ID: 27558837
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of Off-Target Mutations in CRISPR-Edited Rice Plants Using Whole-Genome Sequencing.
    Liu G; Qi Y; Zhang T
    Methods Mol Biol; 2021; 2238():145-172. PubMed ID: 33471330
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system.
    Wang P; Zhang J; Sun L; Ma Y; Xu J; Liang S; Deng J; Tan J; Zhang Q; Tu L; Daniell H; Jin S; Zhang X
    Plant Biotechnol J; 2018 Jan; 16(1):137-150. PubMed ID: 28499063
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cas9-PF, an early flowering and visual selection marker system, enhances the frequency of editing event occurrence and expedites the isolation of genome-edited and transgene-free plants.
    Liu Y; Zeng J; Yuan C; Guo Y; Yu H; Li Y; Huang C
    Plant Biotechnol J; 2019 Jul; 17(7):1191-1193. PubMed ID: 30963647
    [No Abstract]   [Full Text] [Related]  

  • 47. Virus-Induced Gene Editing and Its Applications in Plants.
    Zhang C; Liu S; Li X; Zhang R; Li J
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142116
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Experimental teaching design of CRISPR/Cas9 technology in rice breeding application].
    Liu Y; Ma B; Chen X
    Sheng Wu Gong Cheng Xue Bao; 2024 Apr; 40(4):1237-1250. PubMed ID: 38658160
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeted mutagenesis in wheat microspores using CRISPR/Cas9.
    Bhowmik P; Ellison E; Polley B; Bollina V; Kulkarni M; Ghanbarnia K; Song H; Gao C; Voytas DF; Kagale S
    Sci Rep; 2018 Apr; 8(1):6502. PubMed ID: 29695804
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Generating Mutant for a Stress-Responsive Gene in Rice Using CRISPR-Cas9 System.
    Prakash CS; Sunkar R
    Methods Mol Biol; 2024; 2832():281-290. PubMed ID: 38869803
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing.
    Li X; Zhou W; Ren Y; Tian X; Lv T; Wang Z; Fang J; Chu C; Yang J; Bu Q
    J Genet Genomics; 2017 Mar; 44(3):175-178. PubMed ID: 28291639
    [No Abstract]   [Full Text] [Related]  

  • 52. CRISPR/Cas9-Mediated Genome Editing in Indica Rice (Oryza sativa L. subsp. indica var. CR-5272).
    Rojas-Vásquez R; Hernández-Soto A; Arrieta-Espinoza G; Gatica-Arias A
    Methods Mol Biol; 2024; 2788():257-271. PubMed ID: 38656519
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat.
    Li J; Wang Z; He G; Ma L; Deng XW
    J Genet Genomics; 2020 May; 47(5):263-272. PubMed ID: 32694014
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances.
    Soda N; Verma L; Giri J
    Plant Physiol Biochem; 2018 Oct; 131():2-11. PubMed ID: 29103811
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient deletion of multiple circle RNA loci by CRISPR-Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice.
    Zhou J; Yuan M; Zhao Y; Quan Q; Yu D; Yang H; Tang X; Xin X; Cai G; Qian Q; Qi Y; Zhang Y
    Plant Biotechnol J; 2021 Jun; 19(6):1240-1252. PubMed ID: 33440058
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering broad-spectrum resistance to rice bacterial blight by editing the OsETR susceptible haplotype using CRISPR/Cas9.
    Li J; Wang D; Zhao P; Chen T; Ma L; Zhou Y
    Plant Cell Rep; 2024 Aug; 43(9):222. PubMed ID: 39190135
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Establishment of an efficient early flowering-assisted CRISPR/Cas9 gene-editing system in Arabidopsis.
    Lao K; Xiao Y; Huang Q; Mo B; Dong X; Wang X
    Plant Cell Rep; 2023 Jan; 42(1):211-214. PubMed ID: 36326850
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimizing
    Molina-Risco M; Ibarra O; Faion-Molina M; Kim B; Septiningsih EM; Thomson MJ
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681568
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean.
    Do PT; Nguyen CX; Bui HT; Tran LTN; Stacey G; Gillman JD; Zhang ZJ; Stacey MG
    BMC Plant Biol; 2019 Jul; 19(1):311. PubMed ID: 31307375
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing.
    Ashokkumar S; Jaganathan D; Ramanathan V; Rahman H; Palaniswamy R; Kambale R; Muthurajan R
    PLoS One; 2020; 15(8):e0237018. PubMed ID: 32785241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.