These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38299450)

  • 1. Progress in Anode Stability Improvement for Seawater Electrolysis to Produce Hydrogen.
    Zhang S; Xu W; Chen H; Yang Q; Liu H; Bao S; Tian Z; Slavcheva E; Lu Z
    Adv Mater; 2024 Sep; 36(37):e2311322. PubMed ID: 38299450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term Durability of Seawater Electrolysis for Hydrogen: From Catalysts to Systems.
    Liu Y; Wang Y; Fornasiero P; Tian G; Strasser P; Yang XY
    Angew Chem Int Ed Engl; 2024 Nov; 63(47):e202412087. PubMed ID: 39205621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ag Nanoparticle-Induced Surface Chloride Immobilization Strategy Enables Stable Seawater Electrolysis.
    Xu W; Wang Z; Liu P; Tang X; Zhang S; Chen H; Yang Q; Chen X; Tian Z; Dai S; Chen L; Lu Z
    Adv Mater; 2024 Jan; 36(2):e2306062. PubMed ID: 37907201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seawater electrolysis for fuels and chemicals production: fundamentals, achievements, and perspectives.
    Chen L; Yu C; Dong J; Han Y; Huang H; Li W; Zhang Y; Tan X; Qiu J
    Chem Soc Rev; 2024 Jul; 53(14):7455-7488. PubMed ID: 38855878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design Strategy of Corrosion-Resistant Electrodes for Seawater Electrolysis.
    Zhao L; Li X; Yu J; Zhou W
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode.
    Zhang S; Wang Y; Li S; Wang Z; Chen H; Yi L; Chen X; Yang Q; Xu W; Wang A; Lu Z
    Nat Commun; 2023 Aug; 14(1):4822. PubMed ID: 37563114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Corrosion Resistance of NiFe-Layered Double Hydroxide Catalyst for Stable Seawater Electrolysis Promoted by Phosphate Intercalation.
    Zhang B; Liu S; Zhang S; Cao Y; Wang H; Han C; Sun J
    Small; 2022 Nov; 18(45):e2203852. PubMed ID: 36192167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production.
    Li P; Wang S; Samo IA; Zhang X; Wang Z; Wang C; Li Y; Du Y; Zhong Y; Cheng C; Xu W; Liu X; Kuang Y; Lu Z; Sun X
    Research (Wash D C); 2020; 2020():2872141. PubMed ID: 33043295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for Electrochemically Sustainable H
    Hou Y; Lv J; Quan W; Lin Y; Hong Z; Huang Y
    Adv Sci (Weinh); 2022 Mar; 9(7):e2104916. PubMed ID: 35018743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional Design of Catalysts for Seawater Electrolysis for Hydrogen Production.
    Cui C; Zhang H; Wang D; Song J; Yang Y
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Critical Role of Additive Sulfate for Stable Alkaline Seawater Oxidation on Nickel-Based Electrodes.
    Ma T; Xu W; Li B; Chen X; Zhao J; Wan S; Jiang K; Zhang S; Wang Z; Tian Z; Lu Z; Chen L
    Angew Chem Int Ed Engl; 2021 Oct; 60(42):22740-22744. PubMed ID: 34431193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced membrane-based electrode engineering toward efficient and durable water electrolysis and cost-effective seawater electrolysis in membrane electrolyzers.
    Tang J; Su C; Shao Z
    Exploration (Beijing); 2024 Feb; 4(1):20220112. PubMed ID: 38854490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater.
    Xiao X; Yang L; Sun W; Chen Y; Yu H; Li K; Jia B; Zhang L; Ma T
    Small; 2022 Mar; 18(11):e2105830. PubMed ID: 34878210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable Seawater Electrolysis Over 10 000 H via Chemical Fixation of Sulfate on NiFeBa-LDH.
    Chen H; Liu P; Li W; Xu W; Wen Y; Zhang S; Yi L; Dai Y; Chen X; Dai S; Tian Z; Chen L; Lu Z
    Adv Mater; 2024 Nov; 36(45):e2411302. PubMed ID: 39291899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design Strategies toward High-Performance Zn Metal Anode.
    Nie W; Cheng H; Sun Q; Liang S; Lu X; Lu B; Zhou J
    Small Methods; 2024 Jun; 8(6):e2201572. PubMed ID: 36840645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-entropy NiFeCoV disulfides for enhanced alkaline water/seawater electrolysis.
    Feng C; Chen M; Zhou Y; Xie Z; Li X; Xiaokaiti P; Kansha Y; Abudula A; Guan G
    J Colloid Interface Sci; 2023 Sep; 645():724-734. PubMed ID: 37172482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation.
    Zhang L; Wang Z; Qiu J
    Adv Mater; 2022 Apr; 34(16):e2109321. PubMed ID: 35150022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microzone-Acidification-Driven Degradation Mechanism of the NiFe-Based Anode in Seawater Electrolysis.
    Tang M; Du K; Yu R; Shi H; Wang P; Guo Y; Wei Q; Yin H; Wang D
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):3260-3269. PubMed ID: 38221720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Phase Separation-Induced Self-Healing Catalyst for Efficient Direct Seawater Electrolysis.
    Zhang Y; Jeong S; Son E; Choi Y; Lee S; Baik JM; Park H
    ACS Nano; 2024 Jun; 18(25):16312-16323. PubMed ID: 38864411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging materials and technologies for electrocatalytic seawater splitting.
    Jin H; Xu J; Liu H; Shen H; Yu H; Jaroniec M; Zheng Y; Qiao SZ
    Sci Adv; 2023 Oct; 9(42):eadi7755. PubMed ID: 37851797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.