These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38299450)

  • 21. Materials Design and System Innovation for Direct and Indirect Seawater Electrolysis.
    He W; Li X; Tang C; Zhou S; Lu X; Li W; Li X; Zeng X; Dong P; Zhang Y; Zhang Q
    ACS Nano; 2023 Nov; 17(22):22227-22239. PubMed ID: 37965727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nb Doping Induced the Formation of Protective Layer to Improve the Stability of Fe-Ni
    Xing M; Wang S; Yun J; Cao D
    Small; 2024 Nov; 20(46):e2402852. PubMed ID: 39118552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Earth-Abundant Catalyst-Based Seawater Photoelectrolysis System with 17.9% Solar-to-Hydrogen Efficiency.
    Hsu SH; Miao J; Zhang L; Gao J; Wang H; Tao H; Hung SF; Vasileff A; Qiao SZ; Liu B
    Adv Mater; 2018 May; 30(18):e1707261. PubMed ID: 29569283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving the performance stability of direct seawater electrolysis: from catalyst design to electrode engineering.
    Zheng W; Lee LYS; Wong KY
    Nanoscale; 2021 Sep; 13(36):15177-15187. PubMed ID: 34487129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. S-modified NiFe-phosphate hierarchical hollow microspheres for efficient industrial-level seawater electrolysis.
    Song S; Wang Y; Tian X; Sun F; Liu X; Yuan Y; Li W; Zang J
    J Colloid Interface Sci; 2023 Mar; 633():668-678. PubMed ID: 36473357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unraveling the crucial contribution of additive chromate to efficient and stable alkaline seawater oxidation on Ni-based layered double hydroxides.
    Ye L; Ding Y; Niu X; Xu X; Fan K; Wen Y; Zong L; Li X; Du X; Zhan T
    J Colloid Interface Sci; 2024 Jul; 665():240-251. PubMed ID: 38531271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimized Transition Metal Phosphides for Direct Seawater Electrolysis: Current Trends.
    Li Y; Xin T; Cao Z; Zheng W; He P; Yoon Suk Lee L
    ChemSusChem; 2024 Aug; 17(15):e202301926. PubMed ID: 38477449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-supporting, hierarchically hollow structured NiFe-PBA electrocatalyst for efficient alkaline seawater oxidation.
    Zhang K; Xu M; Wang J; Chen Z
    Nanoscale; 2023 Nov; 15(43):17525-17533. PubMed ID: 37869872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct Seawater Electrolysis: From Catalyst Design to Device Applications.
    Fei H; Liu R; Liu T; Ju M; Lei J; Wang Z; Wang S; Zhang Y; Chen W; Wu Z; Ni M; Wang J
    Adv Mater; 2024 Apr; 36(17):e2309211. PubMed ID: 37918125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer.
    Kang X; Yang F; Zhang Z; Liu H; Ge S; Hu S; Li S; Luo Y; Yu Q; Liu Z; Wang Q; Ren W; Sun C; Cheng HM; Liu B
    Nat Commun; 2023 Jun; 14(1):3607. PubMed ID: 37330593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advances in direct seawater splitting for producing hydrogen.
    Xu SW; Li J; Zhang N; Shen W; Zheng Y; Xi P
    Chem Commun (Camb); 2023 Aug; 59(65):9792-9802. PubMed ID: 37527284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-situ fabrication of bimetallic FeCo
    Zhang J; Fang Y; Chen Y; Zhang X; Xiao H; Zhao M; Zhao C; Ma X; Hu T; Luo E; Jia J; Wu H
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):821-832. PubMed ID: 37769361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Green Hydrogen Production by Low-Temperature Membrane-Engineered Water Electrolyzers, and Regenerative Fuel Cells.
    Bodard A; Chen Z; ELJarray O; Zhang G
    Small Methods; 2024 Sep; ():e2400574. PubMed ID: 39285832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selectivity of Oxygen Evolution Reaction on Carbon Cloth-Supported δ-MnO
    Yan H; Wang X; Linkov V; Ji S; Wang R
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal nitrides for seawater electrolysis.
    Hu H; Wang X; Attfield JP; Yang M
    Chem Soc Rev; 2024 Jan; 53(1):163-203. PubMed ID: 38019124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ampere-Level Hydrogen Generation via 1000 H Stable Seawater Electrolysis Catalyzed by Pt-Cluster-Loaded NiFeCo Phosphide.
    Zhou L; Wan T; Zhong Y; Liu W; Yu L; Li T; Sun K; Waterhouse GIN; Xu H; Kuang Y; Zhou D; Sun X
    Small; 2024 Dec; 20(49):e2406076. PubMed ID: 39289826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant.
    Guerrero-Sodric O; Baeza JA; Guisasola A
    Water Res; 2024 Jun; 256():121616. PubMed ID: 38657305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.
    Yang J; Yin B; Sun Y; Pan H; Sun W; Jia B; Zhang S; Ma T
    Nanomicro Lett; 2022 Jan; 14(1):42. PubMed ID: 34981202
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering Multilevel Collaborative Catalytic Interfaces with Multifunctional Iron Sites Enabling High-Performance Real Seawater Splitting.
    Zhang F; Liu Y; Yu F; Pang H; Zhou X; Li D; Ma W; Zhou Q; Mo Y; Zhou H
    ACS Nano; 2023 Jan; ():. PubMed ID: 36594437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly Durable and Efficient Seawater Electrolysis Enabled by Defective Graphene-Confined Nanoreactor.
    Gong Z; Liu J; Yan M; Gong H; Ye G; Fei H
    ACS Nano; 2023 Sep; 17(18):18372-18381. PubMed ID: 37702711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.