BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38299466)

  • 1. Unleashing the Power of Osmotic Energy: Metal Hydroxide-Organic Framework Membranes for Efficient Conversion.
    Zeng H; Yao C; Wu C; Wang D; Ma W; Wang J
    Small; 2024 Jun; 20(26):e2310811. PubMed ID: 38299466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric Nanoporous Alumina Membranes for Nanofluidic Osmotic Energy Conversion.
    Zhang Y; Wang H; Wang J; Li L; Sun H; Wang C
    Chem Asian J; 2023 Dec; 18(23):e202300876. PubMed ID: 37886875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Growth of MOF-303 Membranes onto Porous Anodic Aluminum Oxide Substrates for Harvesting Salinity-Gradient Energy.
    Pan B; Wang J; Yao C; Zhang S; Wu R; Zeng H; Wang D; Wu C
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59463-59474. PubMed ID: 38099706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined amphipathic ionic-liquid regulated anodic aluminum oxide membranes with adjustable ion selectivity for improved osmotic energy conversion.
    Ma S; Hao J; Hou Y; Zhao J; Lin C; Sui X
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1217-1224. PubMed ID: 37797497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion.
    Fu W; Zhang J; Zhang Q; Ahmad M; Sun Z; Li Z; Zhu Y; Zhou Y; Wang S
    Int J Biol Macromol; 2024 Feb; 257(Pt 1):128546. PubMed ID: 38061510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting.
    Bang KR; Kwon C; Lee H; Kim S; Cho ES
    ACS Nano; 2023 Jun; 17(11):10000-10009. PubMed ID: 37196224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH
    Yao L; Li Q; Pan S; Cheng J; Liu X
    Front Bioeng Biotechnol; 2022; 10():901507. PubMed ID: 35528210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal-Organic Framework Membranes.
    Li ZQ; Zhu GL; Mo RJ; Wu MY; Ding XL; Huang LQ; Wu ZQ; Xia XH
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202202698. PubMed ID: 35293120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Ionic Diode Covalent Organic Framework Membrane for Efficient Osmotic Energy Conversion.
    Cao L; Chen IC; Liu X; Li Z; Zhou Z; Lai Z
    ACS Nano; 2022 Nov; 16(11):18910-18920. PubMed ID: 36283039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes.
    Cao L; Chen IC; Chen C; Shinde DB; Liu X; Li Z; Zhou Z; Zhang Y; Han Y; Lai Z
    J Am Chem Soc; 2022 Jul; 144(27):12400-12409. PubMed ID: 35762206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Dimensional Membranes with Highly Charged Nanochannels for Osmotic Energy Conversion.
    Qian Y; Liu D; Yang G; Chen J; Ma Y; Wang L; Wang X; Lei W
    ChemSusChem; 2022 Oct; 15(19):e202200933. PubMed ID: 35853838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Janus Metal-Organic Framework Membranes Boosting the Osmotic Energy Harvesting.
    Li ZQ; Zhu GL; Mo RJ; Wu MY; Ding XL; Huang LQ; Wu ZQ; Xia XH
    ACS Appl Mater Interfaces; 2023 May; 15(19):23922-23930. PubMed ID: 37145874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrodeposited MOFs Membrane with In Situ Incorporation of Charged Molecules for Osmotic Energy Harvesting.
    Yao B; Hussain S; Ye Z; Peng X
    Small; 2023 May; 19(18):e2207559. PubMed ID: 36725315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermo-Osmotic Energy Conversion Enabled by Covalent-Organic-Framework Membranes with Record Output Power Density.
    Zuo X; Zhu C; Xian W; Meng QW; Guo Q; Zhu X; Wang S; Wang Y; Ma S; Sun Q
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202116910. PubMed ID: 35179288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile strategy for the preparation of carbon nanotubes/polybutadiene crosslinked composite membrane and its application in osmotic energy harvesting.
    Lin C; Hao J; Zhao J; Hou Y; Ma S; Sui X
    J Colloid Interface Sci; 2024 Jan; 654(Pt B):840-847. PubMed ID: 37898068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Angstrom-Scale Heterogeneous MOF-on-MOF Membrane for Osmotic Energy Harvesting.
    Tonnah RK; Chai M; Abdollahzadeh M; Xiao H; Mohammad M; Hosseini E; Zakertabrizi M; Jarrahbashi D; Asadi A; Razmjou A; Asadnia M
    ACS Nano; 2023 Jul; 17(13):12445-12457. PubMed ID: 37347939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Commercial Nafion Membranes for Harvesting Osmotic Energy from Proton Gradients that Exceed the Commercial Goal of 5.0 W/m
    Hou Q; Dai Y; Zhang X; Xia F
    ACS Nano; 2024 May; 18(19):12580-12587. PubMed ID: 38696339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes.
    Xiao T; Li X; Lei W; Lu B; Liu Z; Zhai J
    J Colloid Interface Sci; 2024 Jun; 673():365-372. PubMed ID: 38878371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased ion transport and high-efficient osmotic energy conversion through aqueous stable graphitic carbon nitride/cellulose nanofiber composite membrane.
    Gao Z; Sun Z; Ahmad M; Liu Y; Wei H; Wang S; Jin Y
    Carbohydr Polym; 2022 Mar; 280():119023. PubMed ID: 35027125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.