These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38299634)

  • 1. Metal-driven folding and assembly of a minimal β-sheet into a 3D-porous honeycomb framework.
    Bajpayee N; Pophali S; Vijayakanth T; Nandi S; Desai AV; Kumar V; Jain R; Bera S; Shimon LJW; Misra R
    Chem Commun (Camb); 2024 Feb; 60(19):2621-2624. PubMed ID: 38299634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational Adaptation of β-Peptide Foldamers for the Formation of Metal-Peptide Frameworks.
    Jeong S; Zhang L; Kim J; Gong J; Choi J; Ok KM; Lee Y; Kwon S; Lee HS
    Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202108364. PubMed ID: 34469030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-Coordinated Supramolecular Polymers from the Minimalistic Hybrid Peptide Foldamers.
    Dey S; Misra R; Saseendran A; Pahan S; Gopi HN
    Angew Chem Int Ed Engl; 2021 Apr; 60(18):9863-9868. PubMed ID: 33543831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous Peptide Complexes by a Folding-and-Assembly Strategy.
    Sawada T; Yamagami M; Akinaga S; Miyaji T; Fujita M
    Chem Asian J; 2017 Jul; 12(14):1715-1718. PubMed ID: 28380285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic β-Barrel by Metal-Induced Folding and Assembly.
    Yamagami M; Sawada T; Fujita M
    J Am Chem Soc; 2018 Jul; 140(28):8644-8647. PubMed ID: 29975527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of Functional Globular β-Sheet Miniproteins.
    Pham TL; Thomas F
    Chembiochem; 2024 Apr; 25(7):e202300745. PubMed ID: 38275210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-Controlled Reversible Folding of Copolymers via Formation of β-sheet Secondary Structures.
    Sbordone F; Micallef A; Frisch H
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202319839. PubMed ID: 38205669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Helix Frameworks from Short Hybrid Peptide Foldamers.
    Misra R; Saseendran A; Dey S; Gopi HN
    Angew Chem Int Ed Engl; 2019 Feb; 58(8):2251-2255. PubMed ID: 30556646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring Helical Peptides and Foldamers for the Design of Metal Helix Frameworks: Current Trends and Future Perspectives.
    Bajpayee N; Vijayakanth T; Rencus-Lazar S; Dasgupta S; Desai AV; Jain R; Gazit E; Misra R
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202214583. PubMed ID: 36434750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anion Tuned Structural Modulation and Nonlinear Optical Effects of Metal-Ion Directed 3
    Roy S; Chaturvedi A; Dey S; Puneeth Kumar DR; Pahan S; Panda Mahapatra S; Mandal P; Gopi HN
    Chemistry; 2023 Dec; 29(72):e202303135. PubMed ID: 37867145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination-driven folding and assembly of a short peptide into a protein-like two-nanometer-sized channel.
    Sawada T; Matsumoto A; Fujita M
    Angew Chem Int Ed Engl; 2014 Jul; 53(28):7228-32. PubMed ID: 24863541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of Functional Nanostructures by Short Helical Peptide Building Blocks.
    Bera S; Gazit E
    Protein Pept Lett; 2019; 26(2):88-97. PubMed ID: 30227810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Reversibly Porous Supramolecular Peptide Framework.
    Brightwell DF; Truccolo G; Samanta K; Fenn EJ; Holder SJ; Shepherd HJ; Hawes CS; Palma A
    Chemistry; 2022 Nov; 28(66):e202202368. PubMed ID: 36040298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foldectures: 3D Molecular Architectures from Self-Assembly of Peptide Foldamers.
    Yoo SH; Lee HS
    Acc Chem Res; 2017 Apr; 50(4):832-841. PubMed ID: 28191927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt-bridging effects on short amphiphilic helical structure and introducing sequence-based short beta-turn motifs.
    Guarracino DA; Gentile K; Grossman A; Li E; Refai N; Mohnot J; King D
    J Biomol Struct Dyn; 2018 Feb; 36(2):475-485. PubMed ID: 28278764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformation Preservation of α-Helical Peptides within Supramolecular Filamentous Assemblies.
    Li Y; Wang Y; Ou SH; Lock LL; Xu X; Ghose S; Li ZJ; Cui H
    Biomacromolecules; 2017 Nov; 18(11):3611-3620. PubMed ID: 28891286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual Control of Peptide Conformation with Light and Metal Coordination.
    Ghosh P; Torner J; Arora PS; Maayan G
    Chemistry; 2021 Jun; 27(35):8956-8959. PubMed ID: 33909298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aromatic-Aromatic Interactions Enable α-Helix to β-Sheet Transition of Peptides to Form Supramolecular Hydrogels.
    Li J; Du X; Hashim S; Shy A; Xu B
    J Am Chem Soc; 2017 Jan; 139(1):71-74. PubMed ID: 27997165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foldameric α/β-peptide analogs of the β-sheet-forming antiangiogenic anginex: structure and bioactivity.
    Hegedüs Z; Wéber E; Kriston-Pál É; Makra I; Czibula Á; Monostori É; Martinek TA
    J Am Chem Soc; 2013 Nov; 135(44):16578-84. PubMed ID: 24088182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide Self-Assemblies from Unusual α-Sheet Conformations Based on Alternation of d/l Amino Acids.
    Zhou P; Hu X; Li J; Wang Y; Yu H; Chen Z; Wang D; Zhao Y; King SM; Rogers SE; Wang J; Lu JR; Xu H
    J Am Chem Soc; 2022 Nov; 144(47):21544-21554. PubMed ID: 36345816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.