These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38300036)

  • 1. All-dielectric absorber based on nano-graphite sheets/ionogels with configurable absorbing band.
    Wu Z; Luo J; Fang X; Zeng Y; Yang Y; Qiao S; Zou Y
    Opt Lett; 2024 Feb; 49(3):466-469. PubMed ID: 38300036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically Transparent Broadband Microwave Absorber by Graphene and Metallic Rings.
    Ma L; Xu H; Lu Z; Tan J
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17727-17738. PubMed ID: 35389630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radio-Absorbing Materials Based on Polymer Composites and Their Application to Solving the Problems of Electromagnetic Compatibility.
    Fionov A; Kraev I; Yurkov G; Solodilov V; Zhukov A; Surgay A; Kuznetsova I; Kolesov V
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35893990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of ZnCl
    Wang L; Zhou P; Guo Y; Zhang J; Qiu X; Guan Y; Yu M; Zhu H; Zhang Q
    RSC Adv; 2019 Mar; 9(17):9718-9728. PubMed ID: 35520714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Scale Dispersion Engineering on Biomass-Derived Materials for Ultra-Wideband and Wide-Angle Microwave Absorption.
    Tan R; Liu Y; Li W; Zhou J; Chen P; Zavabeti A; Zeng H; Yao Z
    Small Methods; 2024 Mar; ():e2301772. PubMed ID: 38513234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydro/Organo/Ionogels: "Controllable" Electromagnetic Wave Absorbers.
    Zhao Z; Zhang L; Wu H
    Adv Mater; 2022 Oct; 34(43):e2205376. PubMed ID: 36067008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrabroadband and >93% Microwave Absorption Enabled by "Doped" Water Meta-Atom Lattice with Subwavelength Thickness.
    Qin J; Shi Y; Jiang S; Gao Y; Yao S; Wang Z; Cheng X; Tsai DP; Zhang W; Zhu W
    Adv Mater; 2024 Oct; ():e2411153. PubMed ID: 39410731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Printed Low-Cost Dielectric-Resonator-Based Ultra-Broadband Microwave Absorber Using Carbon-Loaded Acrylonitrile Butadiene Styrene Polymer.
    Ren J; Yin JY
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30036968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metamaterial Absorbers with Archimedean Tiling Structures: Toward Response and Absorption of Multiband Electromagnetic Waves.
    Duan Y; Gu S; Ma B; Wang M; Chen W; Shi Y; Liu J
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opportunities and challenges in microwave absorption of nickel-carbon composites.
    Deng J; Bai Z; Zhao B; Guo X; Zhao H; Xu H; Park CB
    Phys Chem Chem Phys; 2021 Sep; 23(37):20795-20834. PubMed ID: 34546266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transparent Perfect Microwave Absorber Employing Asymmetric Resonance Cavity.
    Wang H; Zhang Y; Ji C; Zhang C; Liu D; Zhang Z; Lu Z; Tan J; Guo LJ
    Adv Sci (Weinh); 2019 Oct; 6(19):1901320. PubMed ID: 31592425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Based THz Absorber with a Broad Band for Tuning the Absorption Rate and a Narrow Band for Tuning the Absorbing Frequency.
    Zhou Q; Liu P; Liu C; Zhou Y; Zha S
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31398824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.
    Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V
    Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long Carbon Fibers for Microwave Absorption: Effect of Fiber Length on Absorption Frequency Band.
    Breiss H; El Assal A; Benzerga R; Méjean C; Sharaiha A
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33291239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable Kapok Fiber-Derived Carbon Microtube as Broadband Microwave Absorbing Material.
    Long A; Zhao P; Liao L; Wang R; Tao J; Liao J; Liao X; Zhao Y
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Material-structure integrated design for ultra-broadband all-dielectric metamaterial absorber.
    Peng M; Qin F; Zhou L; Wei H; Zhu Z; Shen X
    J Phys Condens Matter; 2021 Dec; 34(11):. PubMed ID: 34905743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of a Broadband Microwave Composite Thin Film Absorber.
    Zhang Y; Gao Y; Yang S; Li Z; Wang X; Zhang J
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and fabrication of multi-material broadband electromagnetic absorbers for use in cavity-backed antennas.
    Gupta E; Bonner C; Muhammed F; McParland K; Mirotznik M
    Heliyon; 2023 Mar; 9(3):e14164. PubMed ID: 36967905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Preparation of Flexible Graphene/Nonwoven Composites with Simultaneous Broadband Absorption and Stable Properties.
    Bi S; Song Y; Hou G; Li H; Yang N; Liu Z
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber.
    Begaud X; Lepage AC; Varault S; Soiron M; Barka A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.