These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38300040)

  • 1. Nonreciprocal strong mechanical squeezing based on the Sagnac effect and two-tone driving.
    Zhao B; Zhou KX; Wei MR; Cao J; Guo Q
    Opt Lett; 2024 Feb; 49(3):486-489. PubMed ID: 38300040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonreciprocal sideband responses in a spinning microwave magnomechanical system.
    Wang X; Huang KW; Xiong H
    Opt Express; 2023 Feb; 31(4):5492-5506. PubMed ID: 36823828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical noise-resistant nonreciprocal phonon blockade in a spinning optomechanical resonator.
    Yuan N; He S; Li SY; Wang N; Zhu AD
    Opt Express; 2023 Jun; 31(12):20160-20173. PubMed ID: 37381416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonreciprocal Optomechanical Entanglement against Backscattering Losses.
    Jiao YF; Zhang SD; Zhang YL; Miranowicz A; Kuang LM; Jing H
    Phys Rev Lett; 2020 Oct; 125(14):143605. PubMed ID: 33064545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable nonreciprocal phonon laser in a hybrid photonic molecule based on directional quantum squeezing.
    Zhou YR; Zhang QF; Liu FF; Han YH; Gao YP; Fan L; Zhang R; Cao C
    Opt Express; 2024 Jan; 32(2):2786-2803. PubMed ID: 38297799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonreciprocal photon blockade in a spinning optomechanical system with nonreciprocal coupling.
    Liu YM; Cheng J; Wang HF; Yi X
    Opt Express; 2023 Apr; 31(8):12847-12864. PubMed ID: 37157436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Squeezing Induced Optical Nonreciprocity.
    Tang L; Tang J; Chen M; Nori F; Xiao M; Xia K
    Phys Rev Lett; 2022 Feb; 128(8):083604. PubMed ID: 35275662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonreciprocal optical-microwave entanglement in a spinning magnetic resonator.
    Ren YL
    Opt Lett; 2022 Mar; 47(5):1125-1128. PubMed ID: 35230307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Squeezing-induced nonreciprocal photon blockade in an optomechanical microresonator.
    Wang DY; Yan LL; Su SL; Bai CH; Wang HF; Liang E
    Opt Express; 2023 Jul; 31(14):22343-22357. PubMed ID: 37475347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonreciprocal conventional photon blockade in driven dissipative atom-cavity.
    Xue WS; Shen HZ; Yi XX
    Opt Lett; 2020 Aug; 45(16):4424-4427. PubMed ID: 32796974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical nonreciprocity and slow light in coupled spinning optomechanical resonators.
    Mirza IM; Ge W; Jing H
    Opt Express; 2019 Sep; 27(18):25515-25530. PubMed ID: 31510423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical squeezing and photonic anti-bunching in a coupled two-cavity optomechanical system.
    Cai QH; Xiao Y; Yu YF; Zhang ZM
    Opt Express; 2016 Sep; 24(18):20036-48. PubMed ID: 27607612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optomechanically-induced nonreciprocal conversion between microwave and optical photons.
    Xing FF; Qin LG; Tian LJ; Wu XY; Huang JH
    Opt Express; 2023 Feb; 31(5):7120-7133. PubMed ID: 36859849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optomechanical squeezing with strong harmonic mechanical driving.
    Lin XY; Ye GZ; Liu Y; Jiang YK; Wu H
    Opt Express; 2024 Mar; 32(6):8847-8861. PubMed ID: 38571132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonreciprocal control and cooling of phonon modes in an optomechanical system.
    Xu H; Jiang L; Clerk AA; Harris JGE
    Nature; 2019 Apr; 568(7750):65-69. PubMed ID: 30944494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large and robust mechanical squeezing of optomechanical systems in a highly unresolved sideband regime via Duffing nonlinearity and intracavity squeezed light.
    Zhang JS; Chen AX
    Opt Express; 2020 Nov; 28(24):36620-36631. PubMed ID: 33379752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum squeezing-induced quantum entanglement and EPR steering in a coupled optomechanical system.
    Wu SX; Bai CH; Li G; Yu CS; Zhang T
    Opt Express; 2024 Jan; 32(1):260-274. PubMed ID: 38175054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonreciprocity and magnetic-free isolation based on optomechanical interactions.
    Ruesink F; Miri MA; Alù A; Verhagen E
    Nat Commun; 2016 Nov; 7():13662. PubMed ID: 27897165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonreciprocal Frequency Conversion and Mode Routing in a Microresonator.
    Shen Z; Zhang YL; Chen Y; Xiao YF; Zou CL; Guo GC; Dong CH
    Phys Rev Lett; 2023 Jan; 130(1):013601. PubMed ID: 36669210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Squeezed light from a silicon micromechanical resonator.
    Safavi-Naeini AH; Gröblacher S; Hill JT; Chan J; Aspelmeyer M; Painter O
    Nature; 2013 Aug; 500(7461):185-9. PubMed ID: 23925241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.