These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38300222)
1. Growth Control of InP/ZnSe Heterostructured Nanocrystals. Shin D; Lee HJ; Jung D; Chae JA; Park JW; Lim J; Im S; Min S; Hwang E; Lee DC; Park YS; Chang JH; Park K; Kim J; Park JS; Bae WK Adv Mater; 2024 Feb; ():e2312250. PubMed ID: 38300222 [TBL] [Abstract][Full Text] [Related]
2. Comparison studies of excitonic properties and multiphoton absorption of near-infrared-I-emitting Cu-doped InP and InP/ZnSe nanocrystals. He T; Liu H; Li J; Xiao S; Hu W; Qiu X; Lin X; Gao Y Opt Lett; 2020 Mar; 45(6):1350-1353. PubMed ID: 32163963 [TBL] [Abstract][Full Text] [Related]
3. Tuning Hot Carrier Dynamics of InP/ZnSe/ZnS Quantum Dots by Shell Morphology Control. Park J; Won YH; Han Y; Kim HM; Jang E; Kim D Small; 2022 Feb; 18(8):e2105492. PubMed ID: 34889031 [TBL] [Abstract][Full Text] [Related]
4. Tunable Electron-Injection Channels of Heterostructured ZnSe@CdTe Nanocrystals for Surface-Chemistry-Involved Electrochemiluminescence. He Y; Yang L; Zhang F; Zhang B; Zou G J Phys Chem Lett; 2018 Oct; 9(20):6089-6095. PubMed ID: 30285453 [TBL] [Abstract][Full Text] [Related]
5. Semiconductor Nanocrystals: Unveiling the Chemistry behind Different Facets. Kim M; Choi M; Choi S; Jeong S Acc Chem Res; 2023 Jul; 56(13):1756-1765. PubMed ID: 37352443 [TBL] [Abstract][Full Text] [Related]
6. Pressure-stimulus-responsive behaviors of core-shell InP/ZnSe nanocrystals: remarkable piezochromic luminescence and structural assembly. Liu H; Wang Y; Yang X; Zhao X; Wang K; Wu M; Zuo X; Yang W; Sui Y; Zou B Nanoscale; 2022 May; 14(20):7530-7537. PubMed ID: 35481922 [TBL] [Abstract][Full Text] [Related]
7. Interface polarization in heterovalent core-shell nanocrystals. Jeong BG; Chang JH; Hahm D; Rhee S; Park M; Lee S; Kim Y; Shin D; Park JW; Lee C; Lee DC; Park K; Hwang E; Bae WK Nat Mater; 2022 Feb; 21(2):246-252. PubMed ID: 34795403 [TBL] [Abstract][Full Text] [Related]
8. Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods. Hewa-Kasakarage NN; Kirsanova M; Nemchinov A; Schmall N; El-Khoury PZ; Tarnovsky AN; Zamkov M J Am Chem Soc; 2009 Jan; 131(3):1328-34. PubMed ID: 19119809 [TBL] [Abstract][Full Text] [Related]
9. Engineering Brightness Matched Indium Phosphide Quantum Dots. Toufanian R; Chern M; Kong VH; Dennis AM Chem Mater; 2021 Mar; 33(6):1964-1975. PubMed ID: 34219920 [TBL] [Abstract][Full Text] [Related]
11. Increasing the Energy Gap between Band-Edge and Trap States Slows Down Picosecond Carrier Trapping in Highly Luminescent InP/ZnSe/ZnS Quantum Dots. Sung YM; Kim TG; Yun DJ; Lim M; Ko DS; Jung C; Won N; Park S; Jeon WS; Lee HS; Kim JH; Jun S; Sul S; Hwang S Small; 2021 Dec; 17(52):e2102792. PubMed ID: 34636144 [TBL] [Abstract][Full Text] [Related]
12. Tuning the Shades of Red Emission in InP/ZnSe/ZnS Nanocrystals with Narrow Full Width for Fabrication of Light-Emitting Diodes. Soheyli E; Biçer A; Ozel SS; Sahin Tiras K; Mutlugun E ACS Omega; 2023 Oct; 8(42):39690-39698. PubMed ID: 37901544 [TBL] [Abstract][Full Text] [Related]
13. Suppressed Auger recombination and enhanced emission of InP/ZnSe/ZnS quantum dots through inner shell manipulation. Chen Y; Wang R; Kuang Y; Bian Y; Chen F; Shen H; Chi Z; Ran X; Guo L Nanoscale; 2023 Nov; 15(46):18920-18927. PubMed ID: 37975758 [TBL] [Abstract][Full Text] [Related]
14. Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots. Liu J; Yue S; Zhang H; Wang C; Barba D; Vidal F; Sun S; Wang ZM; Bao J; Zhao H; Selopal GS; Rosei F ACS Appl Mater Interfaces; 2023 Jul; 15(29):34797-34808. PubMed ID: 37433096 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of Anisotropic ZnSe Nanorods with Zinc Blende Crystal Structure. Ning J; Kershaw SV; Rogach AL Angew Chem Int Ed Engl; 2020 Mar; 59(13):5385-5391. PubMed ID: 31960576 [TBL] [Abstract][Full Text] [Related]
16. Heteroepitaxial chemistry of zinc chalcogenides on InP nanocrystals for defect-free interfaces with atomic uniformity. Choi Y; Hahm D; Bae WK; Lim J Nat Commun; 2023 Jan; 14(1):43. PubMed ID: 36596807 [TBL] [Abstract][Full Text] [Related]
17. Effects of Surface Chemistry on the Photophysics of Colloidal InP Nanocrystals. Hughes KE; Stein JL; Friedfeld MR; Cossairt BM; Gamelin DR ACS Nano; 2019 Dec; 13(12):14198-14207. PubMed ID: 31730352 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. Xie R; Peng X J Am Chem Soc; 2009 Aug; 131(30):10645-51. PubMed ID: 19588970 [TBL] [Abstract][Full Text] [Related]
19. Ultrafast Electron Transfer in InP/ZnSe/ZnS Quantum Dots for Photocatalytic Hydrogen Evolution. Zeng S; Tan W; Si J; Mao L; Shi J; Li Y; Hou X J Phys Chem Lett; 2022 Oct; 13(39):9096-9102. PubMed ID: 36154010 [TBL] [Abstract][Full Text] [Related]
20. Chemical Synthesis and Applications of Colloidal Metal Phosphide Nanocrystals. Li H; Jia C; Meng X; Li H Front Chem; 2018; 6():652. PubMed ID: 30671431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]