BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38300439)

  • 1. Effect of collagen fibril orientation on the anisotropic properties of peri-implant bone.
    Colabella L; Naili S; Le Cann S; Haiat G
    Biomech Model Mechanobiol; 2024 Jun; 23(3):879-891. PubMed ID: 38300439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation.
    García-Rodríguez J; Martínez-Reina J
    Biomech Model Mechanobiol; 2017 Feb; 16(1):159-172. PubMed ID: 27393155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient two-scale 3D FE model of the bone fibril array: comparison of anisotropic elastic properties with analytical methods and micro-sample testing.
    Alizadeh E; Dehestani M; Zysset P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2127-2147. PubMed ID: 32333217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity.
    Fritsch A; Hellmich C
    J Theor Biol; 2007 Feb; 244(4):597-620. PubMed ID: 17074362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly.
    Cai X; Follet H; Peralta L; Gardegaront M; Farlay D; Gauthier R; Yu B; Gineyts E; Olivier C; Langer M; Gourrier A; Mitton D; Peyrin F; Grimal Q; Laugier P
    Acta Biomater; 2019 May; 90():254-266. PubMed ID: 30922952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization.
    Nikolov S; Raabe D
    Biophys J; 2008 Jun; 94(11):4220-32. PubMed ID: 18310256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach.
    Eberhardsteiner L; Hellmich C; Scheiner S
    Comput Methods Biomech Biomed Engin; 2014; 17(1):48-63. PubMed ID: 22563708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization.
    Parnell WJ; Grimal Q
    J R Soc Interface; 2009 Jan; 6(30):97-109. PubMed ID: 18628200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale.
    Sansalone V; Naili S; Bousson V; Bergot C; Peyrin F; Zarka J; Laredo JD; Haïat G
    J Biomech; 2010 Jul; 43(10):1857-63. PubMed ID: 20392446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements.
    Takano Y; Turner CH; Burr DB
    J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are mineralized tissues open crystal foams reinforced by crosslinked collagen? Some energy arguments.
    Hellmich Ch; Ulm FJ
    J Biomech; 2002 Sep; 35(9):1199-1212. PubMed ID: 12163310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-parameter model of the effective elastic tensor for cortical bone.
    Grimal Q; Rus G; Parnell WJ; Laugier P
    J Biomech; 2011 May; 44(8):1621-5. PubMed ID: 21453920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale micromechanical modeling of the elastic properties of dentin.
    Seyedkavoosi S; Sevostianov I
    J Mech Behav Biomed Mater; 2019 Dec; 100():103397. PubMed ID: 31442944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.
    Barkaoui A; Chamekh A; Merzouki T; Hambli R; Mkaddem A
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):318-38. PubMed ID: 24123969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach.
    Martínez-Reina J; Domínguez J; García-Aznar JM
    Biomech Model Mechanobiol; 2011 Jun; 10(3):309-22. PubMed ID: 20596743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of mesoscale elastic properties and mass density in the human femoral shaft.
    Rohrbach D; Grimal Q; Varga P; Peyrin F; Langer M; Laugier P; Raum K
    Connect Tissue Res; 2015 Apr; 56(2):120-32. PubMed ID: 25738522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure.
    Ghanbari J; Naghdabadi R
    J Biomech; 2009 Jul; 42(10):1560-1565. PubMed ID: 19524928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure.
    Saruwatari L; Aita H; Butz F; Nakamura HK; Ouyang J; Yang Y; Chiou WA; Ogawa T
    J Bone Miner Res; 2005 Nov; 20(11):2002-16. PubMed ID: 16234974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods.
    Reisinger AG; Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2010 Oct; 9(5):499-510. PubMed ID: 20135190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.