These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38300491)
1. Land subsidence susceptibility mapping: a new approach to improve decision stump classification (DSC) performance and combine it with four machine learning algorithms. Zhao R; Arabameri A; Santosh M Environ Sci Pollut Res Int; 2024 Feb; 31(10):15443-15466. PubMed ID: 38300491 [TBL] [Abstract][Full Text] [Related]
2. Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms. Nhu VH; Shirzadi A; Shahabi H; Singh SK; Al-Ansari N; Clague JJ; Jaafari A; Chen W; Miraki S; Dou J; Luu C; Górski K; Thai Pham B; Nguyen HD; Ahmad BB Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32316191 [TBL] [Abstract][Full Text] [Related]
3. Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms. Tien Bui D; Shahabi H; Shirzadi A; Chapi K; Pradhan B; Chen W; Khosravi K; Panahi M; Bin Ahmad B; Saro L Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30065216 [TBL] [Abstract][Full Text] [Related]
4. Spatial modeling of land subsidence using machine learning models and statistical methods. Sekkeravani MA; Bazrafshan O; Pourghasemi HR; Holisaz A Environ Sci Pollut Res Int; 2022 Apr; 29(19):28866-28883. PubMed ID: 34993808 [TBL] [Abstract][Full Text] [Related]
5. Land subsidence hazard modeling: Machine learning to identify predictors and the role of human activities. Rahmati O; Golkarian A; Biggs T; Keesstra S; Mohammadi F; Daliakopoulos IN J Environ Manage; 2019 Apr; 236():466-480. PubMed ID: 30771667 [TBL] [Abstract][Full Text] [Related]
6. Land subsidence modelling using tree-based machine learning algorithms. Rahmati O; Falah F; Naghibi SA; Biggs T; Soltani M; Deo RC; Cerdà A; Mohammadi F; Tien Bui D Sci Total Environ; 2019 Jul; 672():239-252. PubMed ID: 30959291 [TBL] [Abstract][Full Text] [Related]
7. Scrutinization of land subsidence rate using a supportive predictive model: Incorporating radar interferometry and ensemble soft-computing. Choubin B; Shirani K; Hosseini FS; Taheri J; Rahmati O J Environ Manage; 2023 Nov; 345():118685. PubMed ID: 37517093 [TBL] [Abstract][Full Text] [Related]
8. A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran). Tien Bui D; Shirzadi A; Shahabi H; Chapi K; Omidavr E; Pham BT; Talebpour Asl D; Khaledian H; Pradhan B; Panahi M; Bin Ahmad B; Rahmani H; Gróf G; Lee S Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31146336 [TBL] [Abstract][Full Text] [Related]
9. Solving water scarcity challenges in arid regions: A novel approach employing human-based meta-heuristics and machine learning algorithm for groundwater potential mapping. Razavi-Termeh SV; Sadeghi-Niaraki A; Farhangi F; Khiadani M; Pirasteh S; Choi SM Chemosphere; 2024 Sep; 363():142859. PubMed ID: 39025307 [TBL] [Abstract][Full Text] [Related]
10. Comparison of multi-criteria and artificial intelligence models for land-subsidence susceptibility zonation. Arabameri A; Chandra Pal S; Rezaie F; Chakrabortty R; Chowdhuri I; Blaschke T; Thi Ngo PT J Environ Manage; 2021 Apr; 284():112067. PubMed ID: 33556831 [TBL] [Abstract][Full Text] [Related]
11. Using machine learning algorithms to map the groundwater recharge potential zones. Pourghasemi HR; Sadhasivam N; Yousefi S; Tavangar S; Ghaffari Nazarlou H; Santosh M J Environ Manage; 2020 Jul; 265():110525. PubMed ID: 32275245 [TBL] [Abstract][Full Text] [Related]
12. Mapping of groundwater productivity potential with machine learning algorithms: A case study in the provincial capital of Baluchistan, Pakistan. Rasool U; Yin X; Xu Z; Rasool MA; Senapathi V; Hussain M; Siddique J; Trabucco JC Chemosphere; 2022 Sep; 303(Pt 3):135265. PubMed ID: 35691394 [TBL] [Abstract][Full Text] [Related]
13. A novel evolutionary combination of artificial intelligence algorithm and machine learning for landslide susceptibility mapping in the west of Iran. Shen Y; Ahmadi Dehrashid A; Bahar RA; Moayedi H; Nasrollahizadeh B Environ Sci Pollut Res Int; 2023 Dec; 30(59):123527-123555. PubMed ID: 37987977 [TBL] [Abstract][Full Text] [Related]
14. Advancing remote sensing and machine learning-driven frameworks for groundwater withdrawal estimation in Arizona: Linking land subsidence to groundwater withdrawals. Majumdar S; Smith R; Conway BD; Lakshmi V Hydrol Process; 2022 Nov; 36(11):e14757. PubMed ID: 36636486 [TBL] [Abstract][Full Text] [Related]
15. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Naghibi SA; Pourghasemi HR; Dixon B Environ Monit Assess; 2016 Jan; 188(1):44. PubMed ID: 26687087 [TBL] [Abstract][Full Text] [Related]
16. Efficient Model for Coronary Artery Disease Diagnosis: A Comparative Study of Several Machine Learning Algorithms. Garavand A; Salehnasab C; Behmanesh A; Aslani N; Zadeh AH; Ghaderzadeh M J Healthc Eng; 2022; 2022():5359540. PubMed ID: 36304749 [TBL] [Abstract][Full Text] [Related]
17. Groundwater quality modeling and determining critical points: a comparison of machine learning to Best-Worst Method. Nasiri Khiavi A; Mostafazadeh R; Adhami M Environ Sci Pollut Res Int; 2023 Nov; 30(54):115758-115775. PubMed ID: 37889408 [TBL] [Abstract][Full Text] [Related]
18. Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment. Nhu VH; Mohammadi A; Shahabi H; Ahmad BB; Al-Ansari N; Shirzadi A; Clague JJ; Jaafari A; Chen W; Nguyen H Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32650595 [TBL] [Abstract][Full Text] [Related]
19. Comparing machine learning algorithms to predict COVID‑19 mortality using a dataset including chest computed tomography severity score data. Zakariaee SS; Naderi N; Ebrahimi M; Kazemi-Arpanahi H Sci Rep; 2023 Jul; 13(1):11343. PubMed ID: 37443373 [TBL] [Abstract][Full Text] [Related]
20. Probability mapping of groundwater contamination by hydrocarbon from the deep oil reservoirs using GIS-based machine-learning algorithms: a case study of the Dammam aquifer (middle of Iraq). Al-Mayahi HM; Al-Abadi AM; Fryar AE Environ Sci Pollut Res Int; 2021 Mar; 28(11):13736-13751. PubMed ID: 33196994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]