These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38300828)

  • 1. Spontaneous Reconstruction of Copper Active Sites during the Alkaline CORR: Degradation and Recovery of the Performance.
    Liu Q; Jiang Q; Li L; Yang W
    J Am Chem Soc; 2024 Feb; 146(6):4242-4251. PubMed ID: 38300828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Relevance of the Interfacial Water Reactivity for Electrochemical CO Reduction on Copper Single Crystals.
    Winkler D; Leitner M; Auer A; Kunze-Liebhäuser J
    ACS Catal; 2024 Jan; 14(2):1098-1106. PubMed ID: 38269043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces.
    Shao F; Wong JK; Low QH; Iannuzzi M; Li J; Lan J
    Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2118166119. PubMed ID: 35858341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction-Determined Alkaline Water Electrolysis at Industrial Temperatures.
    Liu X; Guo R; Ni K; Xia F; Niu C; Wen B; Meng J; Wu P; Wu J; Wu X; Mai L
    Adv Mater; 2020 Oct; 32(40):e2001136. PubMed ID: 32876959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time Monitoring Reveals Dissolution/Redeposition Mechanism in Copper Nanocatalysts during the Initial Stages of the CO
    Vavra J; Shen TH; Stoian D; Tileli V; Buonsanti R
    Angew Chem Int Ed Engl; 2021 Jan; 60(3):1347-1354. PubMed ID: 32997884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional manipulation of electron transfer in copper/nitrogen doped carbon by Schottky barrier for efficient anodic hydrazine oxidation and cathodic oxygen reduction.
    Dong Q; Li Y; Ji S; Wang H; Kan Z; Linkov V; Wang R
    J Colloid Interface Sci; 2023 Dec; 652(Pt A):57-68. PubMed ID: 37591084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Grain Boundary Sites for the Oxidation of Copper Catalysts during the CO Oxidation Reaction.
    Nilsson S; El Berch JN; Albinsson D; Fritzsche J; Mpourmpakis G; Langhammer C
    ACS Nano; 2023 Oct; 17(20):20284-20298. PubMed ID: 37796938
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Zhang C; Eraky H; Tan S; Hitchcock A; Higgins D
    ACS Nano; 2023 Nov; 17(21):21337-21348. PubMed ID: 37906612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting CO Catalytic Oxidation Performance via Highly Dispersed Copper Atomic Clusters: Regulated Electron Interaction and Reaction Pathways.
    Chen D; Su Z; Si W; Qu Y; Zhao X; Liu H; Yang Y; Wang Y; Peng Y; Chen J; Li J
    Environ Sci Technol; 2023 Feb; 57(7):2928-2938. PubMed ID: 36752384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanopattering in CeOx/Cu(111): A New Type of Surface Reconstruction and Enhancement of Catalytic Activity.
    Senanayake SD; Sadowski JT; Evans J; Kundu S; Agnoli S; Yang F; Stacchiola D; Flege JI; Hrbek J; Rodriguez JA
    J Phys Chem Lett; 2012 Apr; 3(7):839-43. PubMed ID: 26286407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO
    Chou TC; Chang CC; Yu HL; Yu WY; Dong CL; Velasco-Vélez JJ; Chuang CH; Chen LC; Lee JF; Chen JM; Wu HL
    J Am Chem Soc; 2020 Feb; 142(6):2857-2867. PubMed ID: 31955572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanograin-Boundary-Abundant Cu
    Wu Q; Du R; Wang P; Waterhouse GIN; Li J; Qiu Y; Yan K; Zhao Y; Zhao WW; Tsai HJ; Chen MC; Hung SF; Wang X; Chen G
    ACS Nano; 2023 Jul; 17(13):12884-12894. PubMed ID: 37339159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Spectroscopic Study Revealing Why the CO
    El-Nagar GA; Yang F; Stojkovikj S; Mebs S; Gupta S; Ahmet IY; Dau H; Mayer MT
    ACS Catal; 2022 Dec; 12(24):15576-15589. PubMed ID: 36590316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The
    Chen C; Yan X; Wu Y; Liu S; Sun X; Zhu Q; Feng R; Wu T; Qian Q; Liu H; Zheng L; Zhang J; Han B
    Chem Sci; 2021 Apr; 12(16):5938-5943. PubMed ID: 35342541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the Dynamics of Low-Overpotential CO
    de Ruiter J; An H; Wu L; Gijsberg Z; Yang S; Hartman T; Weckhuysen BM; van der Stam W
    J Am Chem Soc; 2022 Aug; 144(33):15047-15058. PubMed ID: 35951390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological Stability of Copper Surfaces under Reducing Conditions.
    Raaijman SJ; Arulmozhi N; Koper MTM
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48730-48744. PubMed ID: 34612038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Self-Reconstruction of Catalysts in Electrocatalysis.
    Jiang H; He Q; Zhang Y; Song L
    Acc Chem Res; 2018 Nov; 51(11):2968-2977. PubMed ID: 30375841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Water as an Initial Proton Source for the Electrochemical CO Reduction Reaction on Copper Surfaces.
    Shao F; Xia Z; You F; Wong JK; Low QH; Xiao H; Yeo BS
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202214210. PubMed ID: 36369647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.